用户名: 密码: 验证码:
Solidification microstructure characteristics of Ti᾿4Al᾿Nb᾿Cr᾿.1B alloy under various cooling rates during mushy zone
详细信息    查看全文
  • 作者:Peng Han ; Hong-Chao Kou ; Jie-Ren Yang ; Guang Yang ; Jin-Shan Li
  • 关键词:β ; solidifying TiAl alloy ; Cooling rate ; Mushy zone ; Solidification microstructure
  • 刊名:Rare Metals
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:35
  • 期:1
  • 页码:35-41
  • 全文大小:2,347 KB
  • 参考文献:[1]Appel F, Paul JDH, Oehring M. Gamma Titanium Aluminide Alloys: Science and Technology. Weinheim: Wiley; 2011.
    [2]Kim YW, Dimiduk DM. Progress in the understanding of gamma titanium aluminides. JOM. 1991;43(8):40.CrossRef
    [3]Clemens H, Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv Eng Mater. 2013;15(4):191.CrossRef
    [4]Clemens H, Wallgram W, Kremmer S, Guther V, Otto A, Bartels A. Design of novel β-solidifying TiAl alloys with adjustable β/B2-phase fraction and excellent hot-workability. Adv Eng Mater. 2008;10(8):707.CrossRef
    [5]Hu D, Yang C, Huang A, Dixon M, Hecht U. Grain refinement in beta-solidifying Ti44Al8Nb1B. Intermetallics. 2012;23(4):49.CrossRef
    [6]Schwaighofer E, Clemens H, Mayer S, Lindemann J, Klose J, Smarsly W, Guther V. Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy. Intermetallics. 2014;44(1):128.CrossRef
    [7]Liu Y, Hu R, Kou HC, Wang J, Zhang TB, Li JS, Zhang J. Solidification characteristics of high Nb-containing γ-TiAl-based alloys with different aluminum contents. Rare Met. 2015;34(6):381.CrossRef
    [8]Yang J, Wang JN, Xia QF, Wang Y. Effect of cooling rate on the grain refinement of TiAl-based alloys by rapid heat treatment. Mater Lett. 2000;46(4):193.CrossRef
    [9]Perdrix F, Trichet MF, Bonnentien JL, Cornet M, Bigot J. Influence of cooling rate on microstructure and mechanical properties of a Ti-48Al alloy. Intermetallics. 1999;7(12):1323.CrossRef
    [10]Liu ZG, Chai LH, Chen YY. Effect of cooling rate and Y element on the microstructure of rapidly solidified TiAl alloys. J Alloys Compd. 2010;504(8):S491.CrossRef
    [11]Xu XJ, Lin JP, Teng ZK, Wang YL, Chen GL. On the microsegregation of Ti–45Al–(8–9) Nb–(W, B, Y) alloy. Mater Lett. 2007;61(2):369.CrossRef
    [12]Chen GL, Xu XJ, Teng ZK, Lin JP, Wang YL. Microsegregation in high Nb containing TiAl alloy ingots beyond laboratory scale. Intermetallics. 2007;15(5):625.CrossRef
    [13]Kim YW, Kim SL, Dimiduk D, Woodward C. Development of beta gamma alloys: opening robust processing and greater application potential for TiAl-based alloys. Structural aluminides for elevated temperatures. TMS 2008 Annual Meeting & Exhibition. Warrendale: The Minerals, Metals & Materials Society; 2008. 215.
    [14]Schmoelzer T, Liss KD, Zickler GA, Watson IJ, Droessler LM, Wallgram W, Buslaps T, Studer A, Clemens H. Phase fractions, transition and ordering temperatures in TiAl–Nb–Mo alloys: an in-and ex situ study. Intermetallics. 2010;18(8):1544.CrossRef
    [15]Imayev RM, Imayev VM, Oehring M, Appel F. Alloy design concepts for refined gamma titanium aluminide based alloys. Intermetallics. 2007;15(4):451.CrossRef
    [16]Hecht U, Witusiewicz V, Drevermann A, Zollinger J. Grain refinement by low boron additions in niobium-rich TiAl-based alloys. Intermetallics. 2008;16(8):969.CrossRef
    [17]Oehring M, Stark A, Paul JDH, Lippmann T, Pyczak F. Microstructural refinement of boron-containing β-solidifying γ-titanium aluminide alloys through heat treatments in the β phase field. Intermetallics. 2013;32(1):12.CrossRef
    [18]Hu D, Yang C, Huang A, Dixon M, Hecht U. Solidification and grain refinement in Ti45Al2Mn2Nb1B. Intermetallics. 2012;22(3):68.CrossRef
    [19]Huang ZW. Inhomogeneous microstructure in highly alloyed cast TiAl-based alloys, caused by microsegregation. Scr Mater. 2005;52(10):1021.CrossRef
    [20]Sun HL, Huang ZW, Zhu DG, Jiang XS. Dendrite core grain refining and interdendritic coarsening behaviour in W-containing γ-TiAl based alloys. J Alloys Compd. 2013;552(3):213.CrossRef
    [21]Xu XJ, Lin JP, Wang YL, Gao JF, Lin Z, Chen GL. Microstructure and tensile properties of as-cast Ti-45Al–(8–9) Nb–(W, B, Y) alloy. J Alloys Compd. 2006;414(1):131.CrossRef
    [22]Johnson DR, Inui H, Muto S, Omiya Y, Yamanaka T. Microstructural development during directional solidification of α-seeded TiAl alloys. Acta Mater. 2006;54(4):1077.CrossRef
  • 作者单位:Peng Han (1)
    Hong-Chao Kou (1)
    Jie-Ren Yang (1)
    Guang Yang (1)
    Jin-Shan Li (1)

    1. The State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, 710072, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Metallic Materials
    Chinese Library of Science
  • 出版者:Journal Publishing Center of University of Science and Technology Beijing, in co-publication with Sp
  • ISSN:1867-7185
文摘
Beta-solidifying TiAl alloy has great potential in the field of aero-industry as a cast alloy. In the present work, the influence of cooling rate during mushy zone on solidification behavior of Ti–44Al–4Nb–2Cr–0.1B alloy was investigated. A vacuum induction heating device combining with temperature control system was used. The Ti–44Al–4Nb–2Cr–0.1B alloy solidified from superheated was melted to β phase with the cooling rates of 10, 50, 100, 200, 400 and 700 K·min−1, respectively. Results show that with the increase in cooling rate from 10 to 700 K·min−1, the colony size of α2/γ lamella decreases from 1513 to 48 μm and the solidification segregation significantly decreases. Also the content of residual B2 phase within α2/γ lamellar colony decreases with the increase in cooling rate. In addition, the alloy in local interdendritic regions would solidify in a hypo-peritectic way, which can be attributed to the solute redistribution and enrichment of Al element in solidification.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700