用户名: 密码: 验证码:
Immersed boundary-finite element model of fluid–structure interaction in the aortic root
详细信息    查看全文
  • 作者:Vittoria Flamini ; Abe DeAnda…
  • 关键词:Aortic valve ; Fluid–structure interaction ; Immersed boundary method ; Incompressible flow ; Hyperelasticity ; Finite element method ; Finite difference method
  • 刊名:Theoretical and Computational Fluid Dynamics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:30
  • 期:1-2
  • 页码:139-164
  • 全文大小:4,451 KB
  • 参考文献:1.Alastrué V., Garía A., Peña E., Rodríguez J., Martínez M., Doblaré M.: Numerical framework for patient-specific computational modelling of vascular tissue. Int. J. Numer. Methods Biomed. Eng. 26(1), 35–51 (2010)CrossRef MATH
    2.Alastrué V., Peña E., Martínez M.Á., Doblaré M.: Assessing the use of the opening angle method to enforce residual stresses in patient-specific arteries. Ann. Biomed. Eng. 35(10), 1821–1837 (2007)CrossRef
    3.Azadani A.N., Chitsaz S., Matthews P.B., Jaussaud N., Leung J., Tsinman T., Ge L., Tseng E.E.: Comparison of mechanical properties of human ascending aorta and aortic sinuses. Ann. Thorac. Surg. 93(1), 87–94 (2012)CrossRef
    4.Bellhouse B.J., Bellhouse F.H.: Mechanism of closure of the aortic valve. Nature 217, 86–87 (1968)CrossRef
    5.Bols, J., Degroote, J., Trachet, B., Verhegghe, B., Segers, P., Vierendeels, J.: A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels. J. Comput. Appl. Math. 246, 10–17 (2013). doi:10.​1016/​j.​cam.​2012.​10.​034
    6.Bonow R.O., Carabello B.A., Chatterjee K., de Leon A.C., Faxon D.P., Freed M.D., Gaasch W.H., Lytle B.W., Nishimura R.A., O’Gara P.T., O’Rourke R.A., Otto C.M., Shah P.M., Shanewise J.S.: ACC/AHA 2006 guidelines for the management of patients with valvular heart disease. Circulation 114(5), E84–E231 (2006)CrossRef
    7.Borazjani I.: Fluid-structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput. Methods Appl. Mech. Eng. 257, 103–116 (2013)CrossRef MathSciNet MATH
    8.Borazjani I., Ge L., Sotiropoulos F.: Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227(16), 7587–7620 (2008)CrossRef MathSciNet MATH
    9.Cai, M., Nonaka, A., Bell, J., Griffith, B., Donev, A.: Efficient variable-coefficient finite-volume Stokes solvers. Commun. Comput. Phys. 16(5), 1263–1297 (2014). doi:10.​4208/​cicp.​070114.​170614a
    10.Cardamone L., Valentín A., Eberth J.F., Humphrey J.D.: Origin of axial prestretch and residual stress in arteries. Biomech. Model. Mechanobiol. 8(6), 431–446 (2009)CrossRef
    11.Carr J.A., Savage E.B.: Aortic valve repair for aortic insufficiency in adults: A contemporary review and comparison with replacement techniques. Eur. J. Cardio Thorac. Surg. 25(1), 6–15 (2005)CrossRef
    12.Cheng A., Dagum P., Miller D.C.: Aortic root dynamics and surgery: from craft to science. Philos. Trans. R. Soc. B 362(1484), 1407–1419 (2007)CrossRef
    13.Cheng R., Lai Y.G., Chandran K.B.: Three-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann. Biomed. Eng. 32(11), 1471–1483 (2004)CrossRef
    14.Conti C.A., Votta E., Della Corte A., Del Viscovo L., Bancone C., Cotrufo M., Redaelli A.: Dynamic finite element analysis of the aortic root from MRI-derived parameters. Med. Eng. Phys. 32(2), 212–221 (2010)CrossRef
    15.Creane A., Kelly D.J., Lally C.: Patient specific computational modeling in cardiovascular mechanics. In: Lopez, B.C., Peña, E. Patient-Specific Computational Modeling, pp. 61–79. Springer, Berlin (2012)CrossRef
    16.Croft L.R., Mofrad M.R.K.: Computational modeling of aortic heart valves. In: De, S., Guilak, F., Mofrad, M.R.K. Computational Modeling in Biomechanics, pp. 221–252. Springer, Berlin (2010)CrossRef
    17.Crosetto P., Reymond P., Deparis S., Kontaxakis D., Stergiopulos N., Quarteroni A.: Fluid–structure interaction simulation of aortic blood flow. Comput. Fluids 43(1), 46–57 (2011)CrossRef MathSciNet MATH
    18.Dagum P., Green G.R., Nistal F.J., Daughteres G.T., Timek T.A., Foppiano L.E., Bolger A.F., Ingels N.B., Miller D.C.: Deformational dynamics of the aortic root: modes and physiologic determinants. Circulation 100(2), II54–II62 (1999)
    19.Hart J., Baaijens F.P.T., Peters G.W.M., Schreurs P.J.G.: A computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valve. J. Biomech. 36(5), 699–712 (2003)CrossRef
    20.Putter S., Wolters B.J.B.M., Rutten M.C.M., Breeuwer M., Gerritsen F.A., van de Vosse F.N.: Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. J. Biomech. 40(5), 1081–1090 (2007)CrossRef
    21.Delfino A., Stergiopulos N., Moore J.E., Meister J.J.: Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30(8), 777–786 (1997)CrossRef
    22.Driscol T.E., Eckstein R.W.: Systolic pressure gradients across the aortic valve and in the ascending aorta. Am. J. Physiol. 209(3), 557–563 (1965)
    23.Dumont K., Stijnen J.M.A., Vierendeels J., Van De Vosse F.N., Verdonck P.R.: Validation of a fluid–structure interaction model of a heart valve using the dynamic mesh method in fluent. Comput. Methods Biomech. Biomed. Eng. 7(3), 139–146 (2004)CrossRef
    24.Esmaily Moghadam M., Bazilevs Y., Hsia T.Y., Vignon-Clementel I.E., Marsden A.L.: A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput. Mech. 48(3), 277–291 (2011)CrossRef MathSciNet MATH
    25.Fai T.G., Griffith B.E., Mori Y., Peskin C.S.: Immersed boundary method for variable viscosity and variable density problems using fast linear solvers. I: numerical method and results. SIAM J. Sci. Comput. 35(5), B1132–B1161 (2013)CrossRef MathSciNet MATH
    26.Freeman R.V., Otto C.M.: Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation 111(24), 3316–3326 (2005)CrossRef
    27.Fung Y.C.: What principle governs the stress distribution in living organs?. In: Fung, Y.C., Fukada, E., Wang, J. Biomechanics in China, Japan and USA, Science Press, Beijing (1983)
    28.Fung Y.C.: What are the residual stresses doing in our blood vessels?. Ann. Biomed. Eng. 19(3), 237–249 (1991)CrossRef MathSciNet
    29.Gao H., Wang H.M., Berry C., Luo X.Y., Griffith B.E.: Quasi-static image-based immersed boundary-finite element model of left ventricle under diastolic loading. Int. J. Numer. Methods Biomed. Eng. 30(11), 1199–1222 (2014)CrossRef MathSciNet
    30.Gasser T.C., Ogden R.W., Holzapfel G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6), 15–35 (2006)CrossRef
    31.Gee M.W., Reeps C., Eckstein H.H., Wall W.A.: Prestressing in finite deformation abdominal aortic aneurysm simulation. J. Biomech. 42(11), 1732–1739 (2009)CrossRef
    32.Govindjee S., Mihalic P.A.: Computational methods for inverse deformations in quasi-incompressible finite elasticity. Int. J. Numer. Methods Eng. 43(5), 821–838 (1998)CrossRef MATH
    33.Griffith B.E.: An accurate and efficient method for the incompressible Navier–Stokes equations using the projection method as a preconditioner. J. Comput. Phys. 228(20), 7565–7595 (2009)CrossRef MathSciNet MATH
    34.Griffith B.E.: Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int. J. Numer. Methods Biomed. Eng. 28(3), 317–345 (2012)CrossRef MathSciNet MATH
    35.Griffith B.E., Hornung R.D., McQueen D.M., Peskin C.S.: An adaptive, formally second order accurate version of the immersed boundary method. J. Comput. Phys. 223(1), 10–49 (2007)CrossRef MathSciNet MATH
    36.Griffith B.E., Hornung R.D., McQueen D.M., Peskin C.S.: Parallel and adaptive simulation of cardiac fluid dynamics. In: Parashar, M., Li, X. Advanced Computational Infrastructures for Parallel and Distributed Adaptive Applications, Wiley, Hoboken (2009)
    37.Griffith B.E., Lim S.: Simulating an elastic ring with bend and twist by an adaptive generalized immersed boundary method. Commun. Comput. Phys. 12(2), 433–461 (2012)MathSciNet
    38.Griffith B.E., Luo X., McQueen D.M., Peskin C.S.: Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int. J. Appl. Mech. 1(1), 137–177 (2009)CrossRef
    39.Griffith, B.E., Luo, X.Y.: Hybrid finite difference/finite element version of the immersed boundary method (submitted)
    40.Guy R.D., Phillip B., Griffith B.E.: Geometric multigrid for an implicit-time immersed boundary method. Adv. Comput. Math. 41(3), 635–662 (2015)CrossRef MathSciNet
    41.Humphrey J.D.: Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. Springer, Berlin (2002)CrossRef
    42.Kim Y., Peskin C.S.: Penalty immersed boundary method for an elastic boundary with mass. Phys. Fluids 19, 053103 (2007)CrossRef
    43.Kim, Y., Zhu, L., Wang, X., Peskin C.S.: On various techniques for computer simulation of boundaries with mass. In: Bathe, K.J. (ed.) Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics, pp. 1746–1750. Elsevier, Amsterdam (2003)
    44.Kovács S.J., McQueen D.M., Peskin C.S.: Modelling cardiac fluid dynamics and diastolic function. Philos. Trans. R. Soc. Lond. A 359(1783), 1299–1314 (2001)CrossRef MATH
    45.Lansac E., Lim H.S., Shomura Y., Lim K.H., Rice N.T., Goetz W., Acar C., Duran C.M.G.: A four-dimensional study of the aortic root dynamics. Eur. J. Cardio Thorac. Surg. 22(4), 497–503 (2002)CrossRef
    46.Lu J., Zhou X., Raghavan M.L.: Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J. Biomech. 40(3), 693–696 (2007)CrossRef
    47.Luo X.Y., Griffith B.E., Ma X.S., Yin M., Wang T.J., Liang C.L., Watton P.N., Bernacca G.M.: Effect of bending rigidity in a dynamic model of a polyurethane prosthetic mitral valve. Biomech. Model. Mechanobiol. 11(6), 815–827 (2012)CrossRef
    48.Ma X.S., Gao H., Griffith B.E., Berry C., Luo X.Y.: Image-based fluid–structure interaction model of the human mitral valve. Comput. Fluids 71, 417–425 (2013)CrossRef MathSciNet
    49.Marom G., Haj-Ali R., Raanani E., Schäfers H.J., Rosenfeld M.: A fluid–structure interaction model of the aortic valve with coaptation and compliant aortic root. Med. Biol. Eng. Comput. 50(2), 173–182 (2012)CrossRef
    50.May-Newman K., Lam C., Yin F.C.P.: A hyperelastic constitutive law for aortic valve tissue. J. Biomech. Eng. 131(8), 081009 (2009)CrossRef
    51.McQueen D.M., Peskin C.S.: Shared-memory parallel vector implementation of the immersed boundary method for the computation of blood flow in the beating mammalian heart. J. Supercomput. 11(3), 213–236 (1997)CrossRef
    52.McQueen D.M., Peskin C.S.: A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. Comput. Graph. 34(1), 56–60 (2000)CrossRef
    53.McQueen, D.M., Peskin, C.S.: Heart simulation by an immersed boundary method with formal second-order accuracy and reduced numerical viscosity. In: Aref, H., Phillips J.W. (eds.) Mechanics for a New Millennium, Proceedings of the 20th International Conference on Theoretical and Applied Mechanics (ICTAM 2000). Kluwer Academic Publishers (2001)
    54.Mori Y., Peskin C.S.: Implicit second order immersed boundary methods with boundary mass. Comput. Methods Appl. Mech. Eng. 197(25–28), 2049–2067 (2008)CrossRef MathSciNet MATH
    55.Murgo J.P., Westerhof N., Giolma J.P., Altobelli S.A.: Aortic input impedance in normal man: relationship to pressure wave forms. Circulation 62(1), 105–116 (1980)CrossRef
    56.Nichols W.W., O’Rourke M.F.: McDonald’s Blood Flow in Arteries: Theoretical, Experimental, and Clinical Principles. CRC Press, Boca Raton (2011)
    57.Peskin C.S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10(2), 252–271 (1972)CrossRef MATH
    58.Peskin C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)CrossRef MathSciNet MATH
    59.Peskin C.S., McQueen D.M.: Mechanical equilibrium determines the fractal fiber architecture of aortic heart valve leaflets. Am. J. Physiol. Heart Circ. Physiol. 266(1), H319–H328 (1994)
    60.Peskin C.S., McQueen D.M.: Fluid dynamics of the heart and its valves. In: Othmer, H.G., Adler, F.R., Lewis, M.A., Dallon, J.C. Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology, pp. 309–337. Prentice-Hall, Englewood Cliffs (1996)
    61.Reul H., Vahlbruch A., Giersiepen M., Schmitz-Rode T.H., Hirtz V., Effert S.: The geometry of the aortic root in health, at valve disease and after valve replacement. J. Biomech. 23(2), 181–191 (1990)CrossRef
    62.Roy, S., Heltai, L., Costanzo, F.: Benchmarking the immersed finite element method for fluid–structure interaction problems. ArXiv preprint arXiv:​1306.​0936
    63.Sacks M.S., Yoganathan A.P.: Heart valve function: a biomechanical perspective. Philos. Trans. R. Soc. B Biol. Sci. 362(1484), 1369–1391 (2007)CrossRef
    64.Sauren, A.A.H.J.: The mechanical behaviour of the aortic valve. Ph.D. thesis, Technische Universiteit Eindhoven (1981)
    65.Sellier M.: An iterative method for the inverse elasto-static problem. J. Fluids Struct. 27(8), 1461–1470 (2011)CrossRef MathSciNet
    66.Shunk K.A., Garot J., Atalar E., Lima J.A.: Transesophageal magnetic resonance imaging of the aortic arch and descending thoracic aorta in patients with aortic atherosclerosis. J. Am. Coll. Cardiol. 37(8), 2031–2035 (2001)CrossRef
    67.Singh I.M., Shishehbor M.H., Christofferson R.D., Tuzcu E.M., Kapadia S.R.: Percutaneous treatment of aortic valve stenosis. Clevel. Clin. J. Med. 75(11), 805–812 (2008)CrossRef
    68.Sotiropoulos F., Borazjani I.: A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med. Biol. Eng. Comput. 47(3), 245–256 (2009)CrossRef
    69.Stergiopulos N., Westerhof B.E., Westerhof N.: Total arterial inertance as the fourth element of the windkessel model. Am. J. Physiol. Heart Circ. Physiol. 276(1), H81–H88 (1999)
    70.Swanson W.M., Clark R.E.: Dimensions and geometric relationships of the human aortic valve as a function of pressure. Circ. Res. 35(6), 871–882 (1974)CrossRef
    71.Thubrikar M.: The Aortic Valve. CRC Press, Boca Raton (1989)
    72.Vaishnav R.N., Vossoughi J.: Estimation of residual strain in aortic segment. In: Hall, C.W. Biomedical Engineering II: Recent Developments, Pergamon Press, Oxford (1983)
    73.Vavourakis V., Papaharilaou Y., Ekaterinaris J.A.: Coupled fluid–structure interaction hemodynamics in a zero-pressure state corrected arterial geometry. J. Biomech. 44(13), 2453–2460 (2011)CrossRef
    74.Viscardi F., Vergara C., Antiga L., Merelli S., Veneziani A., Puppini G., Faggian G., Mazzucco A., Luciani G.B.: Comparative finite element model analysis of ascending aortic flow in bicuspid and tricuspid aortic valve. Artif. Organs 34(12), 1114–1120 (2010)CrossRef
    75.Weinberg E.J., Kaazempur Mofrad M.R.: A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J. Biomech. 41(16), 3482–3487 (2008)CrossRef
    76.Westerhof N., Stergiopulos N., Noble M.I.M.: Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education. Springer, Berlin (2010)CrossRef
    77.Wittek A., Karatolios K., Bihari P., Schmitz-Rixen T., Moosdorf R., Vogt S., Blase C.: In vivo determination of elastic properties of the human aorta based on 4D ultrasound data. J. Mech. Behav. Biomed. Mater. 27, 167–183 (2013)CrossRef
    78.Yao J., Liu G.R., Narmoneva D.A., Hinton R.B., Zhang Z.Q.: Immersed smoothed finite element method for fluid–structure interaction simulation of aortic valves. Comput. Mech. 50(6), 789–804 (2012)CrossRef MathSciNet MATH
    79.Zhu L., Peskin C.S.: Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J. Comput. Phys. 179(2), 452–468 (2002)CrossRef MathSciNet MATH
  • 作者单位:Vittoria Flamini (1)
    Abe DeAnda (2)
    Boyce E. Griffith (3)

    1. Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA
    2. Division of Cardiothoracic Surgery, Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
    3. Departments of Mathematics and Biomedical Engineering and McAllister Heart Institute, University of North Carolina, Phillips Hall, Campus Box 3250, Chapel Hill, NC, USA
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Fluids
    Mathematical and Computational Physics
    Engineering Fluid Dynamics
    Computational Science and Engineering
    Thermodynamics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2250
文摘
It has long been recognized that aortic root elasticity helps to ensure efficient aortic valve closure, but our understanding of the functional importance of the elasticity and geometry of the aortic root continues to evolve as increasingly detailed in vivo imaging data become available. Herein, we describe a fluid–structure interaction model of the aortic root, including the aortic valve leaflets, the sinuses of Valsalva, the aortic annulus, and the sinotubular junction, that employs a version of Peskin’s immersed boundary (IB) method with a finite element description of the structural elasticity. As in earlier work, we use a fiber-based model of the valve leaflets, but this study extends earlier IB models of the aortic root by employing an incompressible hyperelastic model of the mechanics of the sinuses and ascending aorta using a constitutive law fit to experimental data from human aortic root tissue. In vivo pressure loading is accounted for by a backward displacement method that determines the unloaded configuration of the root model. Our model yields realistic cardiac output at physiological pressures, with low transvalvular pressure differences during forward flow, minimal regurgitation during valve closure, and realistic pressure loads when the valve is closed during diastole. Further, results from high-resolution computations indicate that although the detailed leaflet and root kinematics show some grid sensitivity, our IB model of the aortic root nonetheless produces essentially grid-converged flow rates and pressures at practical grid spacings for the high Reynolds number flows of the aortic root. These results thereby clarify minimum grid resolutions required by such models when used as stand-alone models of the aortic valve as well as when used to provide models of the outflow valves in models of left-ventricular fluid dynamics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700