用户名: 密码: 验证码:
A novel robust principal component analysis method for image and video processing
详细信息    查看全文
  • 作者:Guoqiang Huan ; Ying Li ; Zhanjie Song
  • 关键词:robust principal component analysis ; sparse Bayesian learning ; Markov random fields ; matrix factorization ; contiguity prior
  • 刊名:Applications of Mathematics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:61
  • 期:2
  • 页码:197-214
  • 全文大小:859 KB
  • 参考文献:[1] S. D. Babacan, M. Luessi, R. Molina, A. K. Katsaggelos: Sparse Bayesian methods for low-rank matrix estimation. IEEE Trans. Signal Process. 60 (2012), 3964–3977.MathSciNet CrossRef
    [2] C. M. Bishop: Pattern Recognition and Machine Learning. Information Science and Statistics, Springer, New York, 2006.
    [3] Y. Boykov, O. Veksler, R. Zabih: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23 (2010), 1222–1239.CrossRef
    [4] E. J. Candès, X. Li, Y. Ma, J. Wright: Robust principal component analysis? J. ACM 58 (2011), Article No. 11, 37 pages.
    [5] E. J. Candès, B. Recht: Exact matrix completion via convex optimization. Found. Comput. Math. 9 (2009), 717–772.MathSciNet CrossRef MATH
    [6] E. J. Candès, T. Tao: The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory 56 (2010), 2053–2080.MathSciNet CrossRef
    [7] F. De la Torre, M. J. Black: A framework for robust subspace learning. Int. J. Comput. Vis. 54 (2003), 117–142.CrossRef MATH
    [8] X. Ding, L. He, L. Carin: Bayesian robust principal component analysis. IEEE Trans. Image Process. 20 (2011), 3419–3430.MathSciNet CrossRef
    [9] C. Ding, D. Zhou, X. He, H. Zha: R 1-PCA: rotational invariant L 1-norm principal component analysis for robust subspace factorization. Proc. 23rd Int. Conf. on Machine Learning. Pittsburgh. ACM, New York, 2006, pp. 281–288.
    [10] P. C. Hansen: Rank-Deficient and Discrete Ill-Posed Problems. Numerical Aspects of Linear Inversion. SIAM Monographs on Mathematical Modeling and Computation 4, Society for Industrial and Applied Mathematics, Philadelphia, 1998.
    [11] I. T. Jolliffe: Principal Component Analysis. Springer Series in Statistics, Springer, New York, 2002.
    [12] V. Kolmogorov, R. Zabin: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004), 147–159.CrossRef
    [13] N. Kwak: Principal component analysis based on L1-norm maximization. IEEE Trans. Pattern Anal. Mach. Intell. 30 (2008), 1672–1680.CrossRef
    [14] S. Z. Li: Markov Random Field Modeling in Image Analysis. Advances in Pattern Recognition, Springer, London, 2009.
    [15] Z. Lin, M. Chen, Y. Ma: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. ArXiv preprint arXiv:1009. 5055, 2010.
    [16] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, Y. Ma: Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. Computational Advances in Multi-Sensor Adaptive Processing. Aruba, Dutch Antilles, Proceedings. IEEE, 2009.
    [17] G. Liu, Z. Lin, Y. Yu: Robust subspace segmentation by low-rank representation. Proc. 27th Int. Conf. on Machine Learning, Haifa. Proceedings Omni Press., 2010, pp. 663–670.
    [18] R. Mazumder, T. Hastie, R. Tibshirani: Spectral regularization algorithms for learning large incomplete matrices. J. Mach. Learn. Res. 11 (2010), 2287–2322.MathSciNet MATH
    [19] Y. Peng, A. Ganesh, J. Wright, W. Xu, Y. Ma: RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34 (2012), 2233–2246.CrossRef
    [20] B. Recht, M. Fazel, P. A. Parrilo: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52 (2010), 471–501.MathSciNet CrossRef MATH
    [21] N. Wang, D. Y. Yeung: Bayesian robust matrix factorization for image and video processing. Computer Vision, 2013 IEEE International Conference, Sydney. Proceedings. IEEE, 2013, pp. 1785–1792.
    [22] J. Wright, A. Ganesh, S. Rao, Y. Peng, Y. Ma: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. Advances in Neural Information Processing Systems 22, Vancouver. Proceedings. Curran Associates, 2009, pp. 2080–2088.
    [23] H. Xu, C. Caramanis, S. Sanghavi: Robust PCA via outlier pursuit. IEEE Trans. Inform. Theory 58 (2012), 3047–3064.MathSciNet CrossRef
    [24] Q. Zhao, D. Meng, Z. Xu, W. Zuo, L. Zhang: Robust principal component analysis with complex noise. Proc. 31st Int. Conf. on Machine Learning, Beijing. Proceedings. J. Mach. Learn Res., 2014, pp. 55–63.
    [25] Z. Zhou, X. Li, J. Wright, E. J. Candès, Y. Ma: Stable principal component pursuit. 2010 IEEE International Symposium on Information Theory Proceedings, Austin. Proceedings. IEEE, 2010, pp. 1518–1522.
    [26] X. Zhou, C. Yang, W. Yu: Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013), 597–610.CrossRef
  • 作者单位:Guoqiang Huan (1) (2)
    Ying Li (3)
    Zhanjie Song (1) (2)

    1. School of Science, Tianjin University, Tianjin, 300072, China
    2. Center for Applied Mathematics, Tianjin University, Tianjin, 300072, China
    3. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin, 300072, China
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Applications of Mathematics
    Mechanics, Fluids and Thermodynamics
    Analysis
    Mathematical and Computational Physics
    Applied Mathematics and Computational Methods of Engineering
    Optimization
  • 出版者:Springer Netherlands
  • ISSN:1572-9109
文摘
The research on the robust principal component analysis has been attracting much attention recently. Generally, the model assumes sparse noise and characterizes the error term by the λ1-norm. However, the sparse noise has clustering effect in practice so using a certain λ p -norm simply is not appropriate for modeling. In this paper, we propose a novel method based on sparse Bayesian learning principles and Markov random fields. The method is proved to be very effective for low-rank matrix recovery and contiguous outliers detection, by enforcing the low-rank constraint in a matrix factorization formulation and incorporating the contiguity prior as a sparsity constraint. The experiments on both synthetic data and some practical computer vision applications show that the novel method proposed in this paper is competitive when compared with other state-of-the-art methods.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700