用户名: 密码: 验证码:
Single crystal erbium compound nanowires as high gain material for on-chip light source applications
详细信息    查看全文
  • 作者:Zhicheng Liu ; Hao Sun ; Leijun Yin ; Yongzhuo Li…
  • 关键词:nanomaterials ; rare ; earth ; doped materials ; lasers ; optical amplifiers ; nanostructure fabrication ; microcavity devices
  • 刊名:Frontiers of Optoelectronics in China
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:9
  • 期:2
  • 页码:312-317
  • 全文大小:642 KB
  • 参考文献:1.Kenyon A J. Erbium in silicon. Semiconductor Science and Technology, 2005, 20(12): R65–R84CrossRef
    2.Mears R J, Reekie L, Jauncey I M, Payne D N. Low-noise erbiumdoped fibre amplifier operating at 1.54 mm. Electronics Letters, 1987, 23(19): 1026–1028CrossRef
    3.Park N, Dawson J W, Vahala K J, Miller C. All fiber, low threshold, widely tunable singl-frequency, erbium-doped fiber ring laser with a tandem fiber Fabry-Perot filter. Applied Physics Letters, 1991, 59(19): 2369–2371CrossRef
    4.Yan Y C, Faber A J, de Waal H, Kik P G, Polman A. Erbium–doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 mm. Applied Physics Letters, 1997, 71(20): 2922–2924CrossRef
    5.Kik P G, Polman A. Erbium doped optical-waveguide amplifiers on silicon. MRS Bulletin, 1998, 23(4): 48–54
    6.Della Valle G, Taccheo S, Laporta P, Sorbello G, Cianci E, Foglietti V. Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange. Electronics Letters, 2006, 42(11): 632–633CrossRef
    7.Bernhardi E H, van Wolferen H A G M, Agazzi L, Khan M R H, Roeloffzen C G H, Wörhoff K, Pollnau M, de Ridder R M. Ultranarrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon. Optics Letters, 2010, 35(14): 2394–2396CrossRef
    8.Bradley J D B, Pollnau M. Erbium-doped integrated waveguide amplifiers and lasers. Laser & Photonics Reviews, 2011, 5(3): 368–403CrossRef
    9.Saini S, Chen K, Duan X, Michel J, Kimerling L C, Lipson M. Er2O3 for high-gain waveguide amplifiers. Journal of Electronic Materials, 2004, 33(7): 809–814CrossRef
    10.Miritello M, Savio R L, Piro A, Franzò G, Priolo F, Iacona F, Bongiorno C. Optical and structural properties of Er2O3 films grown by magnetron sputtering. Journal of Applied Physics, 2006, 100(1): 013502CrossRef
    11.Zheng J, Ding W, Xue C, Zuo Y, Cheng B, Yu J, Wang Q, Wang G, Guo H. Highly efficient photoluminescence of Er2SiO5 films grown by reactive magnetron sputtering method. Journal of Luminescence, 2010, 130(3): 411–414CrossRef
    12.Choi H J, Shin J H, Suh K, Seong H K, Han H C, Lee J C. Selforganized growth of Si/Silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence. Nano Letters, 2005, 5(12): 2432–2437CrossRef
    13.Wang B, Guo R, Wang L, Wang X, Zhou Z. 1.53 µm electroluminescence of erbium excited by hot carriers in ErRE (RE = Yb, Y) silicates. In: Proceedings of Group IV Photonics (GFP)., 2012, 72–74
    14.Wang L, Guo R, Wang B, Wang X, Zhou Z. Hybrid Si3N4-Er/Yb/Y silicate waveguide amplifier with 1.25 dB/cm internal gain. In: Proceedings of Group IV Photonics (GFP)., 2012, 249–251
    15.Pan A, Yin L, Liu Z, Sun M, Liu R B, Nichols P L, Wang Y, Ning C Z. Single-crystal erbium chloride silicate nanowires as a Sicompatible light emission material in communication wavelength. Optical Materials Express, 2011, 1(7): 1202–1209CrossRef
    16.Yin L, Shelhammer D, Zhao G, Liu Z, Ning C Z. Erbium concentration control and optimization in erbium yttrium chloride silicate single crystal nanowires as a high gain material. Applied Physics Letters, 2013, 103(12): 121902CrossRef
    17.Liu Z, Yin L, Ning C Z. Extremely large signal enhancement in an erbium chloride silicate single-crystal nanowire. In: Proceedings of Conference on Lasers and Electro-Optics. San Jose: IEEE, 2013
    18.Liu Z, Zhao G, Yin L, Ning C Z. Demonstration of net gain in an erbium chloride silicate single nanowire waveguide. In: Proceedings of Conference on Lasers and Electro-Optics. San Jose: IEEE, 2014
    19.Suh K, Lee M, Chang J S, Lee H, Park N, Sung G Y, Shin J H. Cooperative upconversion and optical gain in ion-beam sputterdeposited ErxY2–xSiO5 waveguides. Optics Express, 2010, 18(8): 7724–7731CrossRef
    20.Bradley J D B, Agazzi L, Geskus D, Ay F, Wörhoff K, Pollnau M. Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon. Journal of the Optical Society of America B, 2010, 27(2): 187–196CrossRef
    21.Mears R, Reekie L, Poole S, Payne D. Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 mm. Electronics Letters, 1986, 22(3): 159–160CrossRef
    22.Deotare P B, McCutcheon M W, Frank I W, Khan M, Loncar M. High quality factor photonic crystal nanobeam cavities. Applied Physics Letters, 2009, 94(12): 121106CrossRef
    23.Liu H C, Yariv A. Designing coupled-resonator optical waveguides based on high-Q tapered grating-defect resonators. Optics Express, 2012, 20(8): 9249–9263CrossRef
    24.Quan Q, Deotare P B, Loncar M. Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide. Applied Physics Letters, 2010, 96(20): 203102CrossRef
    25.Sauvan C, Lecamp G, Lalanne P, Hugonin J. Modal-reflectivity enhancement by geometry tuning in photonic crystal microcavities. Optics Express, 2005, 13(1): 245–255CrossRef
    26.McCutcheon MW, Loncar M. Design of an ultrahigh quality factor silicon nitride photonic crystal nanocavity for coupling to diamond nanocrystals. 2008, arXiv preprint arXiv:0809.5066
    27.Zain A R, Johnson N P, Sorel M, De La Rue RM. Ultra high quality factor one dimensional photonic crystal/photonic wire microcavities in silicon-on-insulator (SOI). Optics Express, 2008, 16(16): 12084–12089CrossRef
    28.Quan Q, Loncar M. Deterministic design of wavelength scale, ultrahigh Q photonic crystal nanobeam cavities. Optics Express, 2011, 19(19): 18529–18542CrossRef
  • 作者单位:Zhicheng Liu (1)
    Hao Sun (2)
    Leijun Yin (1)
    Yongzhuo Li (2)
    Jianxing Zhang (2)
    Cun-Zheng Ning (1) (2)

    1. School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, 85287, Arizona, USA
    2. Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
  • 刊物类别:Engineering
  • 刊物主题:Electronic and Computer Engineering
    Electromagnetism, Optics and Lasers
    Biomedical Engineering
    Chinese Library of Science
  • 出版者:Higher Education Press, co-published with Springer-Verlag GmbH
  • ISSN:2095-2767
文摘
Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1020 cm–3, thus limiting the maximum optical gain to a few dB/cm, too small to be useful for integrated photonic applications. Er compounds could potentially solve this problem since they contain much higher Er3+ density. So far the existing Er compounds suffer from short lifetime and strong upconversion effects, mainly due to poor crystal qualities. Recently, we explore a new Er compound: erbium chloride silicate (ECS, Er3(SiO4)2Cl) in the form of nanowire, which facilitates the growth of high quality single crystal with relatively large Er3+ density (1.62 × 1022 cm–3). Previous optical results show that the high crystal quality of ECS material leads to a long lifetime up to 1 ms. The Er lifetime-density product was found to be the largest among all the Er containing materials. Pump-probe experiments demonstrated a 644 dB/cm signal enhancement and 30 dB/cm net gain per unit length from a single ECS wire. As a result, such high-gain ECS nanowires can be potentially fabricated into ultra-compact lasers. Even though a single ECS nanowire naturally serves as good waveguide, additional feedback mechanism is needed to form an ultra-compact laser. In this work, we demonstrate the direct fabrication of 1D photonic crystal (PhC) air hole array structure on a single ECS nanowire using focused ion beam (FIB). Transmission measurement shows polarization-dependent stop-band behavior. For transverse electric (TE) polarization, we observed stop-band suppression as much as 12 dB with a 9 μm long airholed structure. Through numerical simulation, we showed that Q-factor as high as 11000 can be achieved at 1.53 μm for a 1D PhC micro-cavity on an ECS nanowire. Such a high Q cavity combined with the high material gain of ECS nanowires provides an attractive solution for ultra-compact lasers, an important goal of this research.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700