用户名: 密码: 验证码:
Design and fabrication of Gd2Zr2O7-based waste forms for U3O8 immobilization in high capacity
详细信息    查看全文
  • 作者:Xiaoyan Shu ; Xirui Lu ; Long Fan ; Ruizhu Yang ; Yi Ding…
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:51
  • 期:11
  • 页码:5281-5289
  • 全文大小:3,643 KB
  • 参考文献:1.Donald IW, Metcalfe BL, Taylor RNJ (1997) The immobilization of high level radioactive wastes using ceramics and glasses. J Mater Sci 22:5851–5887. doi:10.​1023/​A:​1018646507438 CrossRef
    2.Chourasia R, Bohre A, Ambastha RD et al (2010) Crystallographic evaluation of sodium zirconium phosphate as a host structure for immobilization of cesium. J Mater Sci 45:533–545. doi:10.​1007/​s10853-009-3971-0 CrossRef
    3.Banerjee C, Dudwadkar N, Tripathi SC et al (2014) Nano-cerium vanadate: a novel inorganic ion exchanger for removal of americium and uranium from simulated aqueous nuclear waste. J Hazard Mater 280:63–70CrossRef
    4.Zhang KB, Wen GJ, Zhang HB et al (2015) Self-propagating high-temperature synthesis of CeO2 incorporated zirconolite-rich waste forms and the aqueous durability. J Eur Ceram Soc 35:3085–3093CrossRef
    5.Wang C, Wang Y, Zhang A et al (2013) The influence of ionic radii on the grain growth and sintering-resistance of Ln2Ce2O7 (Ln = La, Nd, Sm, Gd). J Mater Sci 48:8133–8139. doi:10.​1007/​s10853-013-7625-x CrossRef
    6.Maik L, Zhang FX, Zhang JM et al (2010) Review of A2B2O7 pyrochlore response to irradiation and pressure. Nucl Instrum Methods Phys Res Sect B 268:2951–2959. doi:10.​1016/​j.​nimb.​2010.​05.​016 CrossRef
    7.Zhang FX, Lang M, Tracy C et al (2014) Incorporation of uranium in pyrochlore oxides and pressure-induced phase transitions. J Solid State Chem 219:49–54CrossRef
    8.Poulsen FW, Glerup M, Holtappels P (2000) Structure, Raman spectra and defect chemistry modelling of conductive pyrochlore oxides. Solid State Ionics 135:595–602CrossRef
    9.Garbout A, Bouattour S, Kolsi AW (2009) Sol-gel synthesis, structure characterization and Raman spectroscopy of Gd2−2xBi2xTi2O7 solid solutions. J Alloys Compd 469:229–236CrossRef
    10.Kong L, Karatchevtseva I, Gregg DJ et al (2013) Gd2Zr2O7 and Nd2Zr2O7 pyrochlore prepared by aqueous chemical synthesis. J Eur Ceram Soc 33:3273–3285CrossRef
    11.Gregg DJ, Zhang YJ, Zhang ZM et al (2013) Crystal chemistry and structures of uranium-doped gadolinium zirconates. J Nucl Mater 438:144–153CrossRef
    12.Mandal BP, Garg N, Sharma SM et al (2009) Solubility of ThO2 in Gd2Zr2O7 pyrochlore: XRD, SEM and Raman spectroscopic studies. J Nucl Mater 392:95–99CrossRef
    13.Kutty KVG, Asuvathraman R, Madhavan RR et al (2005) Actinide immobilization in crystalline matrix: a study of uranium incorporation in gadolinium zirconate. J Phys Chem Solids 66:596–601CrossRef
    14.Su SJ, Ding Y, Shu XY et al (2015) Nd and Ce simultaneous substitution driven structure modifications in Gd2−xNdxZr2−yCeyO7. J Eur Ceram Soc 35:1847–1853CrossRef
    15.Liu ZG, Ouyang JH, Zhou Y et al (2009) Effect of Ti substitution for Zr on the thermal expansion property of fluorite-type Gd2Zr2O7. Mater Design 30:3784–3788CrossRef
    16.Lu XR, Fan L, Shu XY et al (2015) Phase evolution and chemical durability of co-doped Gd2Zr2O7 ceramics for nuclear waste forms. Ceram Int 41:6344–6349CrossRef
    17.Jafar M, Phapale SB, Mandal BP et al (2015) Preparation and structure of uranium-incorporated Gd2Zr2O7 compounds and their thermodynamic stabilities under oxidizing and reducing conditions. Inorg Chem 54:9447–9457CrossRef
    18.Kumari R, Kulriya PK, Grover V et al (2016) Radiation stability of Gd2Zr2O7: effect of stoichiometry and structure. Ceram Int 42:103–109CrossRef
    19.Allen GC, Tempest PA (1986) Ordered defects in the oxides of uranium. Proc R Soc Lond A Math Phys Sci 1831:325–344CrossRef
    20.Pan ZL (1993) Crystallography and mineralogy. Geological Press, Beijing, p 153
    21.Díaz-Guillén JA, Fuentes AF, Díaz-Guillén MR et al (2009) The effect of homovalent A-site substitutions on the ionic conductivity of pyrochlore-type Gd2Zr2O7. J Power Sources 186:349–352CrossRef
    22.Ilton ES, Bagus PS (2008) Ligand field effects on the multiplet structure of the U4f XPS of UO2. Surf Sci 602:1114–1121CrossRef
    23.Boily JF, Ilton ES (2008) An independent confirmation of the correlation of Uf4 primary peaks and satellite structures of UVI, UV and UIV in mixed valence uranium oxides by two-dimensional correlation spectroscopy, Surf Sci 602:3637–3646CrossRef
    24.Veal BW, Lam DJ (1982) Gmelin handbook of inorganic chemistry. In: Keller (ed) vol 45. Springer, Berlin, pp 176–210
    25.Bera S, Sali SK, Sampath S et al (1998) Oxidation state of uranium: an XPS study of alkali and alkaline earth uranates. J Nucl Mater 255:26–33CrossRef
    26.Asuvathraman R, Gnanasekar KI, Clinsha PC et al (2014) Investigations on the charge compensation on Ca and U substitution in CePO4 by using XPS, XRD and Raman spectroscopy. Ceram Int 41:3731–3739CrossRef
    27.Kumar KS, Mathews T, Nawada HP et al (2004) Oxidation behaviour of uranium in the internally gelated urania-ceria solid solutions-XRD and XPS studies. J Nucl Mater 324:177–182CrossRef
    28.Pireaux JJ, Riga J, Thibaut E et al (1977) Shake-up satellites in the x-ray photoelectron spectra of uranium oxides and fluorides: a band structure scheme for uranium dioxide, UO2. Chem Phys 22:113–120CrossRef
  • 作者单位:Xiaoyan Shu (1)
    Xirui Lu (1) (2)
    Long Fan (1)
    Ruizhu Yang (2)
    Yi Ding (1)
    Sheqi Pan (2)
    Ping Zhou (2)
    Yanlin Wu (3)

    1. Key Subject Laboratory of National Defense for Radioactive Waste and Environmental Security, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People’s Republic of China
    2. China Academy of Engineering Physics, Mianyang, 621900, Sichuan, People’s Republic of China
    3. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 9808577, Miyagi, Japan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
For the long-term radiotoxicity of uranium in nuclear waste, U3O8 were immobilized into Gd2Zr2O7 by ceramics solidification technology. Systematic samples (Gd1−4x U2x )2(Zr1−x U x )2O7 (0 ≤ x ≤ 0.25) were designed and prepared simultaneously via lattice substitution. The immobilization effects were identified by XRD, BSE, EDS, SEM, TEM, and XPS. The results show that 38.83 wt% U3O8 gets dissolved in Gd2Zr2O7 as a single phase (corresponding to 0 ≤ x ≤ 0.14 in (Gd1−4x U2x )2(Zr1−x U x )2O7), with U6+ occupies 56 at.% of the Gd3+ positions and U4+ occupies 14 at.% of the Zr4+ sites. The XRD patterns indicate that the solid solutions transform from pyrochlore to defective fluorite structure with enhanced uranium, and this is due to the difference in ionic radii between dopant ions (U6+ and U4+) and the host ions (Gd3+ and Zr4+). Grain coarsening and densification are observed with the increased uranium. Tetravalent and hexavalent uranium in waste forms are confirmed through XPS. This research reveals the good adaptability of Gd2Zr2O7 in immobilizing U3O8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700