用户名: 密码: 验证码:
Graphene frameworks supported cobalt oxide with tunable morphologies for enhanced lithium storage behaviors
详细信息    查看全文
  • 作者:Sheng Han ; Chi Wang ; Yanshan Huang ; Jianzhong Jiang…
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:51
  • 期:10
  • 页码:4856-4863
  • 全文大小:2,775 KB
  • 参考文献:1.Rosa Palacin M (2009) Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev 38:2565–2575CrossRef
    2.Abraham KM (1993) Directions in secondary lithium battery research and development. Electrochim Acta 38:1233–1248CrossRef
    3.Chabot V, Higgins D, Yu A et al (2014) A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ Sci 7:1564–1569CrossRef
    4.Li H, Wang Z, Chen L et al (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593CrossRef
    5.Yang X, Fan K, Zhu Y et al (2013) Electric papers of graphene-coated Co3O4 fibers for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 5:997–1002CrossRef
    6.Wu Z-S, Ren W, Wen L et al (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194CrossRef
    7.Wang X, Wu X-L, Guo Y-G et al (2010) Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv Funct Mater 20:1680–1686CrossRef
    8.Yuan C, Yang L, Hou L et al (2012) Flexible hybrid paper made of monolayer Co3O4 microsphere arrays on rGO/CNTs and their application in electrochemical capacitors. Adv Funct Mater 22:2560–2566CrossRef
    9.Xiao X, Liu X, Zhao H et al (2012) Facile shape control of Co3O4 and the effect of the crystal plane on electrochemical performance. Adv Mater 24:5762–5766CrossRef
    10.Yang S, Feng X, Ivanovici S et al (2010) Fabrication of graphene- encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. Angew Chem Int Ed 49:8408–8411CrossRef
    11.Su S, Guo W, Leng Y et al (2013) Heterogeneous activation of Oxone by CoxFe3−xO4 nanocatalysts for degradation of rhodamine B. J Hazard Mater 244:736–742CrossRef
    12.Kim H, Seo D-H, Kim S-W et al (2011) Highly reversible Co3O4/graphene hybrid anode for lithium rechargeable batteries. Carbon 49:326–332CrossRef
    13.Rai AK, Gim J, Ly Tuan A et al (2013) Partially reduced Co3O4/graphene nanocomposite as an anode material for secondary lithium ion battery. Electrochim Acta 100:63–71CrossRef
    14.Yan J, Wei T, Qiao W et al (2010) Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim Acta 55:6973–6978CrossRef
    15.Zhu X-J, Hu J, Dai H-L et al (2012) Reduced graphene oxide and nanosheet-based nickel oxide microsphere composite as an anode material for lithium ion battery. Electrochim Acta 64:23–28CrossRef
    16.Yao Y, Yang Z, Sun H, Wang S (2012) Hydrothermal synthesis of Co3O4-graphene for heterogeneous activation of peroxymonosulfate for decomposition of phenol. Ind Eng Chem Res 51:14958–14965CrossRef
    17.Li B, Cao H, Shao J, Li G (2011) Co3O4@ graphene composites as anode materials for high-performance lithium ion batteries. Inorg Chem 50:1628–1632CrossRef
    18.Wang B, Wang Y, Park J, Ahn H et al (2011) In situ synthesis of Co3O4/graphene nanocomposite material for lithium-ion batteries and supercapacitors with high capacity and supercapacitance. J Alloys Compd 509:7778–7783CrossRef
    19.Dong X-C, Xu H, Wang X-W et al (2012) 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213CrossRef
    20.Chen W, Li S, Chen C et al (2011) Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater 23:5679–5683CrossRef
    21.Vickery JL, Patil AJ et al (2009) Synthesis and characterization of layer-aligned poly (vinyl alcohol)/graphene nanocomposites. Adv Mater 21:2180–2184CrossRef
    22.Li X, Huang X, Liu D, Wang X et al (2011) Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. J Phys Chem C 115:21567–21573CrossRef
    23.Wu Z-S, Yang S, Sun Y et al (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134:9082–9085CrossRef
    24.Li C, Shi G (2012) Three-dimensional graphene architectures. Nanoscale 4:5549–5563CrossRef
    25.Sevincli H, Topsakal M, Durgun E et al (2008) Electronic and magnetic properties of 3 d transition-metal atom adsorbed graphene and graphene nanoribbons. Phys Rev B 77:195434CrossRef
    26.Cao X, Shi Y, Shi W et al (2011) Preparation of novel 3D graphene networks for supercapacitor applications. Small 7:3163–3168CrossRef
    27.Pappas GS, Ferrari S, Wan C (2015) Recent advances in graphene-based materials for lithium batteries. Curr Org Chem 19:1838–1849CrossRef
    28.Hao W, Chen S, Cai Y, Zhang L et al (2014) Three-dimensional hierarchical pompon-like Co3O4 porous spheres for high-performance lithium-ion batteries. J Mater Chem A 2:13801–13804CrossRef
    29.Tao L, Zai J, Wang K et al (2012) Co3O4 nanorods/graphene nanosheets nanocomposites for lithium ion batteries with improved reversible capacity and cycle stability. J Power Sources 202:230–235CrossRef
    30.Xiang C, Li M, Zhi M et al (2013) A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. J Power Sources 226:65–70CrossRef
    31.Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1344CrossRef
    32.Jiang J, Liu J, Ding R et al (2011) Large-scale uniform α-Co(OH)2 long nanowire arrays grown on graphite as pseudocapacitor electrodes. ACS Appl Mater Interfaces 3:99–103CrossRef
    33.Wang H, Robinson JT, Diankov G et al (2010) Nanocrystal growth on graphene with various degrees of oxidation. J Am Chem Soc 132:3270–3271CrossRef
    34.Li B, Cao H, Shao J et al (2011) Co3O4@ graphene composites as anode materials for high-performance lithium ion batteries. Inorg Chem 50:1628–1632CrossRef
    35.Liang Y, Li Y, Wang H et al (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786CrossRef
    36.Hardin WG, Slanac DA, Wang X et al (2013) Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal–air battery electrodes. J Phys Chem Lett 4:1254–1259CrossRef
  • 作者单位:Sheng Han (1)
    Chi Wang (1)
    Yanshan Huang (2)
    Jianzhong Jiang (1)
    Yinjuan Huang (2)
    Zhixiao Xu (2)
    Dongqing Wu (1)

    1. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
    2. School of Chemical and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
Three-dimensional hybrids of cobalt oxide (Co3O4) and graphene frameworks are fabricated via a facile hydrothermal self-assembly process. By adjusting the time of the hydrothermal treatment, the morphologies of the Co3O4 components can be modified from rods to nanoparticles, which further manifest influences on the electrochemical performance of the hybrids. As the anode in lithium-ion battery, the hybrid loaded with spherical Co3O4 nanoparticles exhibits the highest reversible capacity of 1148 mA h g−1 at 100 mA g−1 for 100 cycles among the three samples. Even at a high current density of 5000 mA g−1, its reversible capacity is still kept at 600 mA h g−1, outperforming the reported hybrids of Co3O4 and graphene.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700