用户名: 密码: 验证码:
A method for the direct growth of carbon nanotubes on macroscopic carbon substrates
详细信息    查看全文
  • 作者:Rongjun Song ; Lina Liu ; Dongwan Yan ; Yun Xiong ; Chaoen Li
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:51
  • 期:5
  • 页码:2330-2337
  • 全文大小:1,685 KB
  • 参考文献:1.Yang F, Wang X, Zhang DQ, Yang J, Luo D, Xu ZW, Wei JK, Wang JQ, Xu Z, Peng F, Li XM, Li RM, Li YL, Li MH, Bai XD, Ding F, Li Y (2014) Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510:522–524CrossRef
    2.Seo JG, Lee TJ, Ko SB, Yeo HG, Kim SH, Noh TY, Song SM, Sung MM, Lee HW (2012) Hierarchical and multifunctional three-dimensional network of carbon nanotubes for microfluidic applications. Adv Mater 24:1975–1979CrossRef
    3.Zhang Y, Ichihashi T, Landree E, Nihey F, Lijima S (1999) Heterostructures of single-walled carbon nanotubes and carbide nanorods. Science 285:1719–1722CrossRef
    4.Liu MH, Yang YL, Zhu T, Liu ZF (2005) Chemical modification of single-walled carbon nanotubes with peroxytrifluoroacetic acid. Carbon 43:1470–1478CrossRef
    5.Tian JW, Xu DZ, Liu MY, Deng FJ, Wang Q, Li Z, Wang K, He XH, Zhang XY, Wei Y (2015) Marrying mussel inspired chemistry with SET-LRP: a novel strategy for surface functionalization of carbon nanotubes. J Polym Sci Polym Chem 53:1872–1879CrossRef
    6.Liu FG, Zhao LZ, An N, Tong DS, Yu WH, Zhou CH (2015) Modification of inorganic porous materials as gene vectors: an overview. J Porous Mater 22:927–937CrossRef
    7.Hata KJ, Futaba DN, Mizuno KH, Namai T, Yumura M, Lijima S (2004) Water-assisted highly efficient synthesis of impurity-free single walled carbon nanotubes. Science 19:1362–1364CrossRef
    8.Du HB, Li YL, Zhou FQ, Su D, Hou F (2010) One-step fabrication of ceramic and carbon nanotube (CNT) composites by in situ growth of CNTs. J Am Ceram Soc 93:1290–1296
    9.Saha AS, Jiang CM, Marti AA (2014) Carbon nanotube networks on different platforms. Carbon 79:1–18CrossRef
    10.Takagi D, Kobayashi Y, Homma Y (2009) Carbon nanotube growth from diamond. J Am Chem Soc 131:6922–6923CrossRef
    11.Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP, Provencio PN (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282:1105–1107CrossRef
    12.Fan ZJ, Yan J, Zhi LJ, Zhang Q, Wei T, Feng J, Zhang ML, Qian WZ, Wei F (2010) A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater 22:3723–3728CrossRef
    13.Talapatra S, Kar S, Pal SK, Vajtai R, Cl L, Victor P, Shaijumon MM, Kaur S, Nalamasu O, Ajayan PM (2006) Direct growth of aligned carbon nanotubes on bulk metals. Nat Nanotechnol 1:112–116CrossRef
    14.Hiraoka T, Yamada T, Hata K, Futaba DN, Kurachi H, Uemura S, Yumura M, Lijima S (2006) Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. J Am Chem Soc 128:13338–13339CrossRef
    15.Cartwright RJ, Esconjauregui S, Weatherup RS, Hardeman D, Guo YZ, Wright E, Oakes D, Hofmann S, Robertson J (2014) The role of the sp2:sp3 substrate content in carbon supported nanotube growth. Carbon 75:327–334CrossRef
    16.Chaiwong K, Kiatsiriroat T, Vorayos N, Thararax C (2013) Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass Bioenergy 56:600–606CrossRef
    17.Yu Y, Wu HW (2010) Bioslurry as a fuel. 2. life-cycle energy and carbon footprints of bioslurry fuels from mallee biomass in Western Australia. Energy Fuels 24:5660–5668CrossRef
    18.Calonaci M, Grana R, Hemings EM, Bozzano G, Dente M, Ranzi E (2010) Comprehensive kinetic modeling study of bio-oil formation from fast pyrolysis of biomass. Energy Fuels 24:5727–5734CrossRef
    19.Huang Y, Kudo SJ, Masek O, Norinage K, Hayashi JI (2013) Simultaneous maximization of the char yield and volatility of oil from biomass pyrolysis. Energy Fuels 27:247–254CrossRef
    20.Guo Y, Rockstraw DA (2006) Physical and chemical properties of carbons synthesized from xylan, cellulose, and kraft lignin by H3PO4 activation. Carbon 44:1464–1475CrossRef
    21.Tang T, Chen XC, Meng XY, Chen H, Ding YP (2005) Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene. Angew Chem Int Ed 44:1517–1520CrossRef
    22.Song RJ, Jiang ZW, Bi WG, Cheng WX, Lu J, Huang BT, Tang T (2007) The combined catalytic action of solid acids with nickel for the transformation of polypropylene into carbon nanotubes by pyrolysis. Chem Eur J 13:3234–3240CrossRef
    23.Song RJ, Jiang ZW, Yu HO, Liu J, Zhang ZJ, Wang QW, Tang T (2008) Strengthening carbon deposition of polyolefin using combined catalyst as a general method for improving fire retardancy. Macromol Rapid Commun 29:789–793CrossRef
    24.Song RJ, Ji Q (2011) Synthesis of carbon nanotubes from polypropylene in the presence of Ni/Mo/MgO catalysts via combustion. Chem Lett 40:1110–1112CrossRef
    25.Jiang ZW, Song RJ, Bi WG, Lu J, Tang T (2007) Polypropylene as a carbon source for the synthesis of multiwalled carbon nanotubes via catalytic combustion. Carbon 45:449–458CrossRef
    26.Cui YB, Wang B, Zhang M (2013) Optimizing reaction condition for synthesizing spinnable carbon nanotube arrays by chemical vapor deposition. J Mater Sci 48:7749–7756. doi:10.​1007/​s10853-013-7596-y CrossRef
    27.Lee J, Oh E, Kim HJ, Cho S, Kim T, Lee S, Park J, Kim HJ, Lee KH (2013) The reason for an upper limit to the height of spinnable carbon nanotube forests. J Mater Sci 48:6897–6904. doi:10.​1007/​s10853-013-7494-3 CrossRef
    28.He MS, Zhou S, Zhang J, Liu ZF, Robinson C (2005) CVD growth of N-doped carbon nanotubes on silicon substrates and its mechanism. J Phys Chem B 109:9275–9279CrossRef
    29.Reich S, Thomsen C (2004) Raman spectroscopy of graphite. Philos Trans Math Phys Eng Sci 362:2271–2288CrossRef
  • 作者单位:Rongjun Song (1)
    Lina Liu (1)
    Dongwan Yan (1)
    Yun Xiong (2)
    Chaoen Li (3)

    1. Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin, 150040, People’s Republic of China
    2. College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People’s Republic of China
    3. CSIRO Energy, 71 Normanby Road, Clayton North, VIC, 3168, Australia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
A simple and general approach is reported for the direct growth of carbon nanotubes (CNTs) on macroscopic carbon substrates. Two typical geometries of biomass materials, cellulose fibers or rice husks, are chosen to act as the precursor of carbon substrates, and commercial polypropylene (PP) pellets are used as the carbon source of CNTs with the presence of Ni–Mo–Mg catalysts. This simple and general strategy was realized by a direct pyrolyzation of the PP blends containing biomass materials and Ni–Mo–Mg catalysts in a chemical vapor deposition device at 800 °C under nitrogen’s protection. The carbon products were characterized by various techniques such as X-ray diffractometer, transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, and thermogravimetric analysis. Results show that the CNTs are successfully grown on the macroscopic carbon substrate derived from cellulose fibers or rice husks, whereas the addition of biomass materials as carbon precursors has to some extent an influence on the morphology of CNTs in the carbon products.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700