用户名: 密码: 验证码:
Geometric analysis of the Goldbeter minimal model for the embryonic cell cycle
详细信息    查看全文
  • 作者:Ilona Kosiuk ; Peter Szmolyan
  • 关键词:Cell cycle ; Mitotic oscillator ; Enzyme kinetics ; Geometric singular perturbation theory ; Relaxation oscillations ; Blow ; up method
  • 刊名:Journal of Mathematical Biology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:72
  • 期:5
  • 页码:1337-1368
  • 全文大小:1,885 KB
  • 参考文献:Aguda BD, Friedman A (2008) Models of cellular regulation, Oxford Graduate Texts. Oxford University Press, OxfordCrossRef
    Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2014) Molecular Biology of the cell. Garland Science, New York
    Battogtokh D, Tyson JJ (2004) Bifurcation analysis of a model of the budding yeast cell cycle. Chaos 14:653–661CrossRef
    Broer HW, Kaper TJ, Krupa M (2013) Geometric desingularization of a cusp singularity in slow-fast systems with applications to Zeeman’s examples. J Dyn Differ Equ 25:925–958CrossRef MathSciNet MATH
    Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ (2000) Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol Biol Cell 11:369–391CrossRef
    Chicone C (2006) Ordinary differential equations with applications. Springer Science+Business Media Inc, New YorkMATH
    Dumortier F, Roussarie R (1996) Canard cycles and center manifolds. Mem Am Math Soc 577
    Erneux T, Goldbeter A (2006) Rescue of the quasi-steady state approximation in a model for oscillations in an enzymatic cascade. SIAM J Appl Math 67:305–320CrossRef MathSciNet
    Fenichel N (1979) Geometric singular perturbation theory. J Differ Equ 31:53–98CrossRef MathSciNet MATH
    Gérard C, Goldbeter A (2011) A skeleton model for the network of cyclin-dependent kinases driving the mammalian cell cycle. R Soc J Interface Focus 1:24–35CrossRef
    Gérard C, Goldbeter A (2012) The cell cycle is a limit cycle. Math Models Nat Phenom 7:126–166CrossRef MATH
    Goldbeter A, Koshland DE Jr (1981) Ultrasensitivity in biochemical systems controlled by covalent modification. Interplay between zero-order and multistep effects. J Biol Chem 259:14441–14447
    Goldbeter A (1991) A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc Natl Acad Sci USA 88:9107–9111CrossRef
    Goldbeter A (1996) Biochemical oscillations and cellular rhythms: the molecular bases of periodic and chaotic behaviour. Cambridge University Press, CambridgeCrossRef MATH
    Grasman J (1987) Asymptotic methods for relaxation oscillations and applications. Springer, New YorkCrossRef MATH
    Gucwa I, Szmolyan P (2009) Geometric singular perturbation analysis of an autocatalotor model. Discrete Contin Dyn Syst Ser S 2:783–806CrossRef MathSciNet MATH
    Hek G (2010) Geometric singular perturbation theory in biological practice. J Math Biol 60:347–386CrossRef MathSciNet MATH
    Hunt T (2001) Protein synthesis, proteolysis, and cell cycle transitions, Nobel lecture. http://​www.​nobelprize.​org/​nobel_​prizes/​medicine/​laureates/​2001/​hunt-lecture
    Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. The MIT Press, Massachusetts
    Jones CKRT (1995) Geometric singular perturbation theory. Springer Lect Notes Math Berlin 1609:44–120CrossRef
    Keener JP, Sneyd J (1998) Mathematical physiology. Springer, New YorkMATH
    Kosiuk I (2012) Relaxation oscillations in slow-fast systems beyond the standard form, PhD thesis, University of Leipzig
    Kosiuk I, Szmolyan P (2011) Scaling in singular perturbation problems: blowing up a relaxation oscillator. SIAM J Appl Dyn Syst 10:1307–1343CrossRef MathSciNet MATH
    Krupa M, Szmolyan P (2001) Extending geometric singular perturbation theory to non-hyperbolic points-fold and canard points in two dimensions. SIAM J Math Anal 33:286–314CrossRef MathSciNet MATH
    Krupa M, Szmolyan P (2001) Extending slow manifolds near transcritical and pitchfork singularities. Nonlinearity 14:1473–1491CrossRef MathSciNet MATH
    Kuehn Ch (2015) Multiple time scale dynamical systems. Springer, Berlin. doi:10.​1007/​978-3-319-12316-5
    Lebovitz NR, Schaar JR (1975) Exchange of stabilities in autonomous systems. Studies Appl Math 54:229–260CrossRef MathSciNet MATH
    Mishchenko EF, Kh Rozov N (1980) Differential equations with small parameters and relaxation oscillations. Plenum Press, New YorkCrossRef MATH
    Morgan DO (2007) The cell cycle: principles of control. New Science Press, Oxford University Press, Sinauer Associates/London, Corby, Sunderland
    Novak B, Tyson JJ (1995) Quantitative analysis of a molecular model of mitotic control in fission yeast. J Theor Biol 173:283–305CrossRef
    Novak B, Tyson JJ (1997) Modeling the control of DNA replication in fission yeast. Proc Natl Acad Sci USA 94:9147–9152CrossRef
    Novak B, Csikasz-Nagy A, Gyorffy B, Chen K, Tyson JJ (1998) Mathematical model of the fission yeast cell cycle with checkpoint controls at the G1/S, G2/M and metaphase/anaphase transitions. Biophys Chem 72:185–200CrossRef
    Nurse P (2000) A long twentieth century of the cell cycle and beyond. Cell 100:71–78CrossRef
    Sveiczer A, Tyson JJ, Novak B (2004) Modelling the fission yeast cell cycle. Brief Funct Genomic Proteomic 2:298–307CrossRef
    Szmolyan P (1991) Transversal heteroclinic and homoclinic orbits in singular perturbation problems. J Differ Equ 92:252–281CrossRef MathSciNet MATH
    Szmolyan P, Wechselberger M (2004) Relaxation oscillations in \(\mathbb{R}^3\) . J Differ Equ 200:69–104CrossRef MathSciNet MATH
    Tyson JJ, Chen K, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell
    Tyson JJ (1991) Modeling the cell division cycle: cdc2 and cyclin interactions. Proc Natl Acad Sci USA 88:7328–7332CrossRef
    Tyson JJ, Chen K, Novak B (2001) Network dynamics and cell physiology. Nat Rev Mol Cell Biol 2:908–916CrossRef
  • 作者单位:Ilona Kosiuk (1)
    Peter Szmolyan (2)

    1. Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103, Leipzig, Germany
    2. Institute for Analysis and Scientific Computing, Technische Universität Wien, Wiedner Hauptstraße 8-10, 1040, Vienna, Austria
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematical Biology
    Applications of Mathematics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1416
文摘
A minimal model describing the embryonic cell division cycle at the molecular level in eukaryotes is analyzed mathematically. It is known from numerical simulations that the corresponding three-dimensional system of ODEs has periodic solutions in certain parameter regimes. We prove the existence of a stable limit cycle and provide a detailed description on how the limit cycle is generated. The limit cycle corresponds to a relaxation oscillation of an auxiliary system, which is singularly perturbed and has the same orbits as the original model. The singular perturbation character of the auxiliary problem is caused by the occurrence of small Michaelis constants in the model. Essential pieces of the limit cycle of the auxiliary problem consist of segments of slow motion close to several branches of a two dimensional critical manifold which are connected by fast jumps. In addition, a new phenomenon of exchange of stability occurs at lines, where the branches of the two-dimensional critical manifold intersect. This novel type of relaxation oscillations is studied by combining standard results from geometric singular perturbation with several suitable blow-up transformations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700