用户名: 密码: 验证码:
Surgical trauma induces postoperative T-cell dysfunction in lung cancer patients through the programmed death-1 pathway
详细信息    查看全文
  • 作者:Pingbo Xu ; Ping Zhang ; Zhirong Sun ; Yun Wang…
  • 关键词:PD ; 1/PD ; L1 ; Surgery ; Immunosuppression ; Lung cancer
  • 刊名:Cancer Immunology, Immunotherapy
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:64
  • 期:11
  • 页码:1383-1392
  • 全文大小:1,618 KB
  • 参考文献:1.Darby S, McGale P, Correa C et al (2011) Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 378:1707–1716. doi:10.​1016/​S0140-6736(11)61629-2 CrossRef PubMed
    2.Tsuchiya Y, Sawada S, Yoshioka I et al (2003) Increased surgical stress promotes tumor metastasis. Surgery 133:547–555. doi:10.​1067/​msy.​2003.​141 CrossRef PubMed
    3.Glasner A, Avraham R, Rosenne E et al (2010) Improving survival rates in two models of spontaneous postoperative metastasis in mice by combined administration of a beta-adrenergic antagonist and a cyclooxygenase-2 inhibitor. J Immunol 184:2449–2457. doi:10.​4049/​jimmunol.​0903301 CrossRef PubMed
    4.Yamaguchi K, Takagi Y, Aoki S et al (2000) Significant detection of circulating cancer cells in the blood by reverse transcriptase–polymerase chain reaction during colorectal cancer resection. Ann Surg 232:58–65PubMedCentral CrossRef PubMed
    5.Melamed R, Bar-Yosef S, Shakhar G et al (2003) Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms and prophylactic measures. Anesth Analg 97:1331–1339CrossRef PubMed
    6.Shavit Y, Ben-Eliyahu S, Zeidel A, Beilin B (2004) Effects of fentanyl on natural killer cell activity and on resistance to tumor metastasis in rats. Dose and timing study. Neuroimmunomodulation 11:255–260. doi:10.​1159/​000078444 CrossRef PubMed
    7.Mokbel K, Choy C, Engledow A (2000) The effect of surgical wounding on tumour development. Eur J Surg Oncol 26:195. doi:10.​1053/​ejso.​1999.​0771 CrossRef PubMed
    8.Lutgendorf SK, Cole S, Costanzo E et al (2003) Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin Cancer Res 9:4514–4521PubMed
    9.Shakhar G, Ben-Eliyahu S (2003) Potential prophylactic measures against postoperative immunosuppression: could they reduce recurrence rates in oncological patients? Ann Surg Oncol 10:972–992CrossRef PubMed
    10.Tai LH, de Souza CT, Belanger S et al (2013) Preventing postoperative metastatic disease by inhibiting surgery-induced dysfunction in natural killer cells. Cancer Res 73:97–107. doi:10.​1158/​0008-5472.​CAN-12-1993 CrossRef PubMed
    11.Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899. doi:10.​1016/​j.​cell.​2010.​01.​025 PubMedCentral CrossRef PubMed
    12.Zamarron BF, Chen W (2011) Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci 7:651–658PubMedCentral CrossRef PubMed
    13.Levi B, Benish M, Goldfarb Y et al (2011) Continuous stress disrupts immunostimulatory effects of IL-12. Brain Behav Immun 25:727–735. doi:10.​1016/​j.​bbi.​2011.​01.​014 PubMedCentral CrossRef PubMed
    14.Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506. doi:10.​4049/​jimmunol.​0802740 PubMedCentral CrossRef PubMed
    15.Gottschalk A, Sharma S, Ford J et al (2010) Review article: the role of the perioperative period in recurrence after cancer surgery. Anesth Analg 110:1636–1643. doi:10.​1213/​ANE.​0b013e3181de0ab6​ CrossRef PubMed
    16.Hogan BV, Peter MB, Shenoy HG et al (2011) Surgery induced immunosuppression. Surgeon 9:38–43. doi:10.​1016/​j.​surge.​2010.​07.​011 CrossRef PubMed
    17.Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364:656–665. doi:10.​1056/​NEJMra0910283 PubMedCentral CrossRef PubMed
    18.Qadan M, Gardner SA, Vitale DS et al (2009) Hypothermia and surgery: immunologic mechanisms for current practice. Ann Surg 250:134–140. doi:10.​1097/​SLA.​0b013e3181ad85f7​ PubMedCentral CrossRef PubMed
    19.Bernard A, Meier C, Ward M et al (2010) Packed red blood cells suppress T-cell proliferation through a process involving cell–cell contact. J Trauma 69:320–329. doi:10.​1097/​TA.​0b013e3181e401f0​ CrossRef PubMed
    20.Borner C, Warnick B, Smida M et al (2009) Mechanisms of opioid-mediated inhibition of human T cell receptor signaling. J Immunol 183:882–889. doi:10.​4049/​jimmunol.​0802763 CrossRef PubMed
    21.Al-Hasani R, Bruchas MR (2011) Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology 115:1363–1381. doi:10.​1097/​ALN.​0b013e318238bba6​ PubMedCentral PubMed
    22.Walz CR, Zedler S, Schneider CP et al (2009) The potential role of T-cells and their interaction with antigen-presenting cells in mediating immunosuppression following trauma-hemorrhage. Innate Immun 15:233–241. doi:10.​1177/​1753425909104679​ CrossRef PubMed
    23.Albertsmeier M, Quaiser D, von Dossow-Hanfstingl V et al (2015) Major surgical trauma differentially affects T-cells and APC. Innate Immun 21:55–64. doi:10.​1177/​1753425913516659​ CrossRef PubMed
    24.Topalian SL, Drake CG, Pardoll DM (2012) Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24:207–212. doi:10.​1016/​j.​coi.​2011.​12.​009 PubMedCentral CrossRef PubMed
    25.Arai Y, Saito H, Ikeguchi M (2012) Upregulation of TIM-3 and PD-1 on CD4+ and CD8+ T cells associated with dysfunction of cell-mediated immunity after colorectal cancer operation. Yonago Acta Med 55:1–9PubMedCentral PubMed
    26.Kinter AL, Godbout EJ, McNally JP et al (2008) The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J Immunol 181:6738–6746CrossRef PubMed
    27.Terawaki S, Chikuma S, Shibayama S et al (2011) IFN-α directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity. J Immunol 186:2772–2779. doi:10.​4049/​jimmunol.​1003208 CrossRef PubMed
    28.Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454. doi:10.​1056/​NEJMoa1200690 PubMedCentral CrossRef PubMed
    29.Fife BT, Pauken KE, Eagar TN et al (2009) Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol 10:1185–1192. doi:10.​1038/​ni.​1790 PubMedCentral CrossRef PubMed
    30.Brahmer JR, Drake CG, Wollner I et al (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28:3167–3175. doi:10.​1200/​JCO.​2009.​26.​7609 CrossRef PubMed
    31.Curran MA, Montalvo W, Yagita H, Allison JP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 107:4275–4280. doi:10.​1073/​pnas.​0915174107 PubMedCentral CrossRef PubMed
    32.Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G (2013) Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res 73:3591–3603. doi:10.​1158/​0008-5472.​CAN-12-4100 PubMedCentral CrossRef PubMed
    33.Brahmer JR, Tykodi SS, Chow LQ et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465. doi:10.​1056/​NEJMoa1200694 PubMedCentral CrossRef PubMed
    34.Bellone S, Centritto F, Black J et al (2015) Polymerase epsilon (POLE) ultra-mutated tumors induce robust tumor-specific CD4+ T cell responses in endometrial cancer patients. Gynecol Oncol 138(1):11–17. doi:10.​1016/​j.​ygyno.​2015.​04.​027 CrossRef PubMed
    35.Eng JW, Kokolus KM, Reed CB et al (2014) A nervous tumor microenvironment: the impact of adrenergic stress on cancer cells, immunosuppression, and immunotherapeutic response. Cancer Immunol Immunother 63:1115–1128. doi:10.​1007/​s00262-014-1617-9 CrossRef PubMed
    36.Brahmamdam P, Inoue S, Unsinger J et al (2010) Delayed administration of anti-PD-1 antibody reverses immune dysfunction and improves survival during sepsis. J Leukoc Biol 88:233–240. doi:10.​1189/​jlb.​0110037 CrossRef PubMed
    37.Zhang Y, Zhou Y, Lou J et al (2010) PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction. Crit Care 14:R220. doi:10.​1186/​cc9354 PubMedCentral CrossRef PubMed
    38.Zhang Y, Li J, Lou J et al (2011) Upregulation of programmed death-1 on T cells and programmed death ligand-1 on monocytes in septic shock patients. Crit Care 15:R70. doi:10.​1186/​cc10059 PubMedCentral CrossRef PubMed
    39.MacFarlane AW IV, Jillab M, Plimack ER et al (2014) PD-1 expression on peripheral blood cells increases with stage in renal cell carcinoma patients and is rapidly reduced after surgical tumor resection. Cancer Immunol Res 2:320–331. doi:10.​1158/​2326-6066.​CIR-13-0133 PubMedCentral CrossRef PubMed
    40.Hotchkiss RS, Chang KC, Swanson PE et al (2000) Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nat Immunol 1(6):496–501CrossRef PubMed
    41.Hotchkiss RS, Tinsley KW, Swanson PE et al (1999) Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc Natl Acad Sci USA 96(25):14541–14546PubMedCentral CrossRef PubMed
    42.Unsinger J, McGlynn M, Kasten KR et al (2010) IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis. J Immunol 184(7):3768–7379. doi:10.​4049/​jimmunol.​0903151 PubMedCentral CrossRef PubMed
    43.Muszynski JA, Nofziger R, Greathouse K et al (2014) Early adaptive immune suppression in children with septic shock: a prospective observational study. Crit Care 18(4):R145. doi:10.​1186/​cc13980 PubMedCentral CrossRef PubMed
  • 作者单位:Pingbo Xu (1)
    Ping Zhang (2)
    Zhirong Sun (1)
    Yun Wang (1)
    Jiawei Chen (1)
    Changhong Miao (1)

    1. Department of Anesthesiology, Fudan University Shanghai Cancer Center, No. 270, Dong an Road, Shanghai, 200032, People’s Republic of China
    2. Cancer Institute, Fudan University Shanghai Cancer Center, No. 270, Dong an Road, Shanghai, 200032, People’s Republic of China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Cancer Research
    Immunology
    Oncology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0851
文摘
The programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) pathway have been shown to be involved in tumor-induced and sepsis-induced immunosuppression. However, whether this pathway is involved in the surgery-induced dysfunction of T lymphocytes is not known. Here, we analyzed expression of PD-1 and PD-L1 on human peripheral mononuclear cells during the perioperative period. We found that surgery increased PD-1/PD-L1 expression on immune cells, which was correlated with the severity of surgical trauma. The count of T lymphocytes and natural killer cells reduced after surgery, probably due to the increased activity of caspase-3. Caspase-3 level was positively correlated with PD-1 expression. Profile of perioperative cytokines and hormones in plasma showed a significantly increased level of interferon-α, as well as various inflammatory cytokines and stress hormones. In ex vivo experiments, administration of anti-PD-1 antibody significantly ameliorated T-cell proliferation and partially reversed the T-cell apoptosis induced by surgical trauma. We provide evidences that surgical trauma can induce immunosuppression through the PD-1/PD-L1 pathway. This pathway could be a target for preventing postoperative cellular immunosuppression.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700