用户名: 密码: 验证码:
Tuning the Nanofriction Between Two Graphene Layers by External Electric Fields: A Density Functional Theory Study
详细信息    查看全文
  • 作者:Jianjun Wang ; Jinming Li ; Chong Li ; Xiaolin Cai ; Wenguang Zhu ; Yu Jia
  • 关键词:Nanofriction ; Graphene ; Density functional theory (DFT) ; External electric field
  • 刊名:Tribology Letters
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:61
  • 期:1
  • 全文大小:872 KB
  • 参考文献:1.Carpick, R.W.: Controlling friction. Science 313, 184–185 (2006)CrossRef
    2.Urbakh, M., Meyer, E.: The renaissance of friction. Nat. Mater. 9, 8–10 (2010)CrossRef
    3.Berman, D., Erdemir, A., Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17, 31–42 (2014)CrossRef
    4.Kwon, S., Ko, J.-H., Jeon, K.-J., Kim, Y.-H., Park, J.Y.: Enhanced nanoscale friction on fluorinated graphene. Nano Lett. 12, 6043–6048 (2012)CrossRef
    5.Wang, J., Wang, F., Li, J., Wang, S., Song, Y., Sun, Q., Jia, Y.: Theoretical study of superlow friction between two single-side-hydrogenated graphene sheets. Tribol. Lett. 48, 255–261 (2012)CrossRef
    6.Wang, J., Li, J., Fang, L., Sun, Q., Jia, Y.: Charge distribution view: large difference in friction performance between graphene and hydrogenated graphene systems. Tribol. Lett. 55, 405–412 (2014)CrossRef
    7.Guo, Y., Guo, W., Chen, C.: Modifying atomic-scale friction between two graphene sheets: a molecular-force-field study. Phys. Rev. B 76, 155429 (2007)CrossRef
    8.Neitola, R., Ruuska, H., Pakkanen, T.A.: Ab iniyio studies on nanoscale friction between graphite layers: effect of model size and level of theory. J. Phys. Chem. B 109, 10348–10354 (2005)CrossRef
    9.Lee, C., Li, Q., Kalb, W., Liu, X., Berger, H., Carpick, R.W., Hone, J.: Frictional characteristics of atomically thin sheets. Science 328, 76 (2010)CrossRef
    10.Zhang, Y., Tang, T.-T., Girit, C., Hao, Z., Martin, M.C., Zettl, A., Crommie, M.F., Shen, Y.R., Wang, F.: Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009)CrossRef
    11.Castro, E.V., Novoselov, K.S., Norozvo, S.V., Peres, N.M.R., Lopes dos Santos, J.M.B., Nilsson, J., Guinea, F., Geim, A.K., Castro, N.A.H.: Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007)CrossRef
    12.Mark, K.F., Lui, C.H., Shan, J., Heintz, T.F.: Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405 (2009)CrossRef
    13.Guo, Y., Guo, W., Chen, C.: Tuning field-induced energy gap of bilayer graphene via interlayer spacing. Appl. Phys. Lett. 92, 243101 (2008)CrossRef
    14.Drummond, C.: Electric-field-induced friction reduction and control. Phys. Rev. Lett. 109, 154302 (2012)CrossRef
    15.Wang, C., Chen, W., Zhang, Y., Sun, Q., Jia, Y.: Effects of vdW interaction and electric field on friction in MoS2. Tribol. Lett. 59, 1–8 (2015)CrossRef
    16.Kress, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)CrossRef
    17.Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)CrossRef
    18.Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)CrossRef
    19.Neugebauer, J., Scheffler, M.: Adsorbate–substrate and adsorbate–adsorbate interactions of Na and K adlayers on Al(111). Phys. Rev. B 46, 16067–16080 (1992)CrossRef
    20.Zhong, W., Tománek, D.: First-principles theory of atomic-scale friction. Phys. Rev. Lett. 64, 3054–3057 (1990)CrossRef
    21.Min, H., Sahu, B., Banerjee, S.K., MacDonald, A.H.: Ab initio theory of gate induced gaps in graphene bilayers. Phys. Rev. B 75, 155115 (2007)CrossRef
    22.Wu, M., Cao, C., Jiang, J.Z.: Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study. Nanotechnology 21, 505202 (2010)CrossRef
    23.Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., Yu, G.: Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009)CrossRef
    24.Kim, Y.A., Fujisawa, K., Muramatsu, H., Hayashi, T., Endo, M., Fujimori, T., Kaneko, K., Terrones, M., Behrends, J., Eckmann, A., Casiraghi, C., Novoselov, K.S., Saito, R., Dresselhaus, M.S.: Raman spectroscopy of boron-doped single-layer graphene. ACS Nano 6, 6293–6300 (2012)CrossRef
  • 作者单位:Jianjun Wang (1) (2)
    Jinming Li (3)
    Chong Li (2)
    Xiaolin Cai (2)
    Wenguang Zhu (4)
    Yu Jia (2)

    1. College of Science, Zhongyuan University of Technology, Zhengzhou, 450007, Henan, China
    2. International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001, China
    3. Department of Physics, Henan Institute of Education, Zhengzhou, 450046, Henan, China
    4. ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, Anhui, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Tribology, Corrosion and Coatings
    Surfaces and Interfaces and Thin Films
    Theoretical and Applied Mechanics
    Physical Chemistry
    Nanotechnology
  • 出版者:Springer Netherlands
  • ISSN:1573-2711
文摘
Understanding and controlling nanofriction are important in practical applications of nanotechnology. Our first-principles calculations reveal that interlayer nanofriction between two graphene layers can be tuned by applying an external electric field; the tuned magnitude of the coefficient of friction ranges from −30 to 30 %, which is attributed to the increased disparity of electronic structures between AA and AB stackings. This effect is significantly observed in boron- or nitrogen-doped systems compared with a pristine graphene system. Our findings present a feasible and precise strategy to tune the frictional properties of graphene systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700