用户名: 密码: 验证码:
Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumulation
详细信息    查看全文
  • 作者:Neha Gupta ; Hari Ram…
  • 关键词:Zn absorption ; Zn biofortification ; Zn hyperaccumulators ; ZIP transporters
  • 刊名:Reviews in Environmental Science and Biotechnology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:15
  • 期:1
  • 页码:89-109
  • 全文大小:781 KB
  • 参考文献:Abbate PE, Andrade FH, Lazaro L, Bariffi JH, Berardocco HG, Inza VH, Marturano F (1998) Grain yield increase in recent Argentine wheat cultivars. Crop Sci 38:1203–1209CrossRef
    Alberts B, Johnson A, Walter P, Lewis J, Raff M, Roberts K (2007) Molecular biology of the cell, 5th edn. Taylor & Francis, Garland Science, New York
    Arguello JM, Eren E, Gonzalez-Guerrero M (2007) The structure and function of heavy metal transport P1B-ATPases. Biometals 20:233–248CrossRef
    Arrivault S, Senger T, Kramer U (2006) The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J 46:861–879CrossRef
    Bailey S, Thompson E, Nixon PJ, Horton P, Mullineaux CW, Robinson C, Mann NH (2002) A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo. J Biol Chem 277:2006–2011CrossRef
    Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126
    Banziger M, Long J (2000) The potential for increasing the iron and zinc density of maize through plant
    eeding. Food Nutr Bull 21:397–400CrossRef
    Barber SA (1995) Soil nutrient bioavailability, 2nd edn. Wiley, New York
    Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14:331–341CrossRef
    Bouain N, Kisko M, Rouached A, Dauzat M, Lacombe B, Belgaroui N, Ghnaya T, Davidian JC, Berthomieu P, Abdelly C, Rouachedet H (2014) Phosphate/zinc interaction analysis in two lettuce varieties reveals contrasting effects on biomass, photosynthesis, and dynamics of Pi transport. BioMed Res Int 2014:1–9. doi:10.​1155/​2014/​548254 CrossRef
    Bouis HE, Hotz C, Mc Clafferty B, Meenakshi JV, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32:S31–S40CrossRef
    Boyd RS (1998) Hyperaccumulation as a plant defensive strategy. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Oxford, pp 181–201
    Boyd RS (2013) Exploring tradeoffs in hyperaccumulator ecology and evolution. New Phytol 199:871–872CrossRef
    Brekken A, Steinnes E (2004) Seasonal concentrations of cadmium and zinc in native pasture plants: consequences for grazing animals. Sci Total Environ 326:181–195CrossRef
    Brezinova T, Vymazal J (2015) Evaluation of heavy metals seasonal accumulation in Phalaris arundinacea in a constructed treatment wetland. Ecol Eng 79:94–99CrossRef
    Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702CrossRef
    Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Perez-Perez J, Solano R, Leyva A, Paz-Ares J (2010) A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet 6:e1001102CrossRef
    Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205CrossRef
    Cakmak I (2004) Identification and correction of widespread zinc deficiency in Turkey-a success story. In: Proceedings of the International Fertiliser Society 552. International Fertiliser Society, York
    Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17CrossRef
    Cakmak I, Marschner H (1986) Mechanism of phosphorus induced zinc deficiency in cotton. I. Zinc deficiency enhanced uptake rate of phosphorus. Physiol Plant 68:483–490CrossRef
    Cakmak I, Marschner H (1987) Mechanism of phosphorus induced zinc deficiency in cotton III. Changes in physiological availability of zinc in plants. Physiol Plant 70:13–20CrossRef
    Cakmak I, Marshner H (1993) Effect of zinc nutritional status on superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves. In: Barrow NJ (ed) Plant nutrition-from genetic engineering field practice. Kluwer, The Netherlanads, pp 133–137CrossRef
    Cakmak I, Kalayci M, Kaya Y, Torun AA, Aydin N, Wang Y, Arisoy Z, Erdem H, Yazici A, Gokmen O, Ozturk L, Horst WJ (2010a) Biofortification and localization of zinc in wheat grain. J Agric Food Chem 58:9092–9102CrossRef
    Cakmak I, Pfeiffer WH, McClafferty B (2010b) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20CrossRef
    Cakmak I, Torun A, Millet E, Feldman M, Fahima T, Korol A, Nevo E, Braun HJ, Ozkan H (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci Plant Nutr 50:1047–1054CrossRef
    Calderini D, Reynolds MP, Slafer GA (2006) Source-sink effects on grain weight of bread wheat, durum wheat, and triticale at different locations. Aust J Agric Res 57:227–233CrossRef
    Calderini DF, Ortiz-Monasterio I (2003) Are synthetic hexaploids a means of increasing grain element concentrations in wheat? Euphytica 134:169–178CrossRef
    Callahan DL, Baker AJM, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11:2–12CrossRef
    Cappa JJ, Pilon-Smits EAH (2014) Evolutionary aspects of elemental hyperaccumulation. Planta 239:267–275CrossRef
    Catlett KM, Heil DM, Lindsay WL, Ebinger MH (2002) Soil chemical properties controlling zinc (2+) activity in 18 Colorado soils. Soil Sci Soc Am J 66:1182–1189CrossRef
    Claus J, Chavarria Krauser A (2012) Modeling regulation of zinc uptake via ZIP transporters in yeast and plant roots. PLoS One 7:e37193CrossRef
    Claus J, Bohmann A, Chavarria Krauser A (2013) Zinc uptake and radial transport in roots of Arabidopsis thaliana: a modelling approach to understand accumulation. Ann Bot 112:369–380CrossRef
    Clemens S, Deinlein U, Ahmadi H, Horeth S, Uraguchi S (2013) Nicotianamine is a major player in plant Zn homeostasis. Biometals 26:623–632CrossRef
    Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315CrossRef
    Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330CrossRef
    Coleman JE (1998) Zinc enzymes. Curr Opin Chem Biol 2:222–234CrossRef
    Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean ML, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11CrossRef
    Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349CrossRef
    Das S, Green A (2013) Importance of zinc in crops and human health. J SAT Agric Res 11:1–7
    Demidchik V, Davenport RJ, Tester M (2002) Non selective cation channels in plants. Ann Rev Plant Biol 53:67–107CrossRef
    Deram A, Denayer FO, Petit D, Van Haluwyn C (2006) Seasonal variations of cadmium and zinc in Arrhenatherum elatius, a perennial grass species from highly contaminated soils. Environ Pollut 140:62–70CrossRef
    Desbrosses-Fonrouge AG, Voigt K, Schroder A, Arrivault S, Thomine S, Kramer U (2005) Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Lett 579:4165–4174CrossRef
    Dinh NT, Vu DT, Mulligan D, Nguyen AV (2015) Accumulation and distribution of zinc in the leaves and roots of the hyperaccumulator Noccaea caerulescens. Env Exp Bot 110:85–95CrossRef
    Disante KB, Fuentes D, Cortina J (2010) Response to drought of Zn-stressed Quercus suber L. seedlings. Environ Exp Bot 70:96–103CrossRef
    Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, Saranga Y, Fahima T (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plant 129:635–643CrossRef
    Drager DB, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Meyer RC, Saumitou-Laprade P, Kramer U (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J 39:425–439CrossRef
    Duman F, Cicek M, Sezen G (2007) Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis). Ecotoxicology 16:457–463CrossRef
    Erenoglu EB, Kutman UB, Ceylan Y, Yildiz B, Cakmak I (2011) Improved nitrogen nutrition enhances root uptake, root to-shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytol 189:438–448CrossRef
    Fageria NK (2009) The use of nutrients in crop plants. CRC Press, Boca Raton, pp 241–278
    Fahima T, Distelfeld A, Peleg Z, Ozturk L, Yazici AM, Saranga Y, Cakmak I (2006) Multiple QTL-effects on grain zinc, iron and protein concentrations localized within a 250-kb interval on chromosome 6BS of wheat. In: 8th international congress of plant molecular biology, 20–25 August 2006, Adelaide, Australia
    Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects. Pergamon, Oxford
    Fones HN, Preston GM (2013) Tradeoffs between metal hyperaccumulation and induced disease resistance in metal hyperaccumulator plants. Plant Pathol 62:63–71CrossRef
    Gibson RS (2006) Zinc: the missing link in combating micronutrient malnutrition in developing countries. Proc Nutr Soc 65:51–60CrossRef
    Goolsby EW, Mason CM (2015) Towards a more physiologically and evolutionary relevant definition of metal hyperaccumulation in plants. Front Plant Sci 6:33. doi:10.​3389/​fpls.​2015.​00033 CrossRef
    Graham R, Senadhira D, Beebe S, Iglesias C, Monasterio I (1999) Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crops Res 60:57–80CrossRef
    Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. PNAS USA 95:7220–7224CrossRef
    Grusak MA, Cakmak I (2005) Methods to improve the crop delivery of minerals to humans and livestock. In: Broadley MR, White PJ (eds) Plant nutritional genomics. Blackwell, Oxford, pp 265–286
    Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198CrossRef
    Hambidge M (2000) Human zinc deficiency. J Nutr 130:1344s–1349s
    Hammond JP, Bowen HC, White PJ, Mills V, Pyke KA, Baker AJM, Whiting SN, May ST, Broadley MR (2006) A comparison of the Thlaspi caerulescens and T. arvense shoot transcriptomes. New Phytol 170:239–260CrossRef
    Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U (2008) Evolution of metal hyper accumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395CrossRef
    Hansch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266CrossRef
    Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant driven selection of microbes. Plant Soil 321:235–257CrossRef
    Haydon MJ, Cobbett CS (2007) A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. Plant Physiol 143:1705–1719CrossRef
    Haydon MJ, Kawachi M, Wirtz M, Hillmer S, Hell R, Kramer U (2012) Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24:724–737CrossRef
    Hotz C, Brown KH (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:94–204CrossRef
    Hu PJ, Qiu RL, Senthilkumar P, Jiang D, Chen ZW, Tang YT, Liu FJ (2009) Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environ Exp Bot 66:317–325CrossRef
    Huang C, Barker SJ, Langridge P, Smith FW, Graham RD (2000) Zinc deficiency up-regulates expression of high affinity phosphate transporter genes in both phosphate sufficient and deficient barley roots. Plant Physiol 124:415–422CrossRef
    Ibrikci H, Knewtson SJB, Grusak MA (2003) Chickpea leaves as a vegetable green for humans: evaluation of mineral composition. J Sci Food Agric 83:945–950CrossRef
    Ishimaru Y, Masuda H, Suzuki M, Bashir K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Over expression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J Exp Bot 58:2909–2915CrossRef
    Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214CrossRef
    Jain A, Sinilal B, Dhandapani G, Meagher RB, Sahi SV (2013) Effects of deficiency and excess of zinc on morpho-physiological traits and spatiotemporal regulation of zinc-responsive genes reveal incidence of cross talk between micro- and macronutrients. Env Sci Technol 47:5327–5335CrossRef
    Johnson AAT, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive overexpression of the OsNAS gene family reveals single gene strategies for effective iron and zinc biofortification of rice endosperm. PLoS One 6:e24476CrossRef
    Khan GA, Bouraine S, Wege S, Li Y, de Carbonnel M, Berthomieu P, Poirier Y, Rouached H (2014) Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1;H3 in Arabidopsis. J Exp Bot 65:871–884CrossRef
    Kim SA, Punshon T, Lanzirotti A, Li LT, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314:1295–1298CrossRef
    Kim YY, Choi H, Segami S, Cho HT, Martinoia E, Maeshima M, Lee Y (2009) AtHMA1 contributes to the detoxification of excess Zn(II) in Arabidopsis. Plant J 58:737–753CrossRef
    Kozhevnikova AD, Seregin IV, Erlikh NT, Shevyreva TA, Andreev IM, Verweij R, Schat H (2014) Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens. New Phytol 203:508–519CrossRef
    Kramer U (2010) Metal hyper-accumulation in plants. Ann Rev Plant Biol 61:517–534CrossRef
    Kramer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353CrossRef
    Krzeslowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant 33:35–51CrossRef
    Kupper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305–311CrossRef
    Kupper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84CrossRef
    Kupper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PMH (2004) Tissue and age dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134:748–757CrossRef
    Kutman UB, Yildiz B, Ozturk L, Cakmak I (2010) Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chem 87:1–9CrossRef
    Le Jean M, Schikora A, Mari S, Briat JF, Curie C (2005) A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. Plant J 44:769–782CrossRef
    Lee S, Jeong HJ, Kim SA, Lee J, Guerinot M, An G (2010) OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol 73:507–517CrossRef
    Lee S, Persson DP, Hansen TH, Husted S, Schjoerring JK, Kim YS, Jeon US, Kim YK, Kakei Y, Masuda H, Nishizawa NK, An G (2011) Bioavailable zinc in rice seeds is increased by activation tagging of nicotianamine synthase. Plant Biotechnol J 9:865–873CrossRef
    Lin CW, Chang HB, Huang HJ (2005) Zinc induces mitogen-activated protein kinase activation mediated by reactive oxygen species in rice roots. Plant Physiol Biochem 43:963–968CrossRef
    Lochlainn SO, Bowen HC, Fray RG, Hammond JP, King GJ, White PJ, Graham NS, Broadley MR (2011) Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens. PLoS One 6:e17814CrossRef
    Loneragan JF, Grunes DL, Welch RM, Aduayi EA, Tengah A, Lazar VA, Cary EE (1982) Phosphorus accumulation and toxicity in leaves in relation to zinc supply. Soil Sci Soc Am J 46:345–352CrossRef
    Lopez Millan AF, Ellis DR, Grusak MA (2005) Effect of zinc and manganese supply on the activities of superoxide dismutase and carbonic anhydrase in Medicago truncatula wild type and raz mutant plants. Plant Sci 168:1015–1022CrossRef
    Lu L, Liao X, Labavitch J, Yang X, Nelson E, Du Y, Brown PH, Tian S (2014) Specia-tion and localization of Zn in the hyperaccumulator Sedum alfredii by extended X-ray absorption fine structure and micro-X-ray fluorescence. Plant Physiol Biochem 84:224–232CrossRef
    Macnair MR (2003) The hyperaccumulation of metals by plants. Advan Botanical Res 40:63–105CrossRef
    Macnair MR, Bert V, Huitson SB, Saumitou-Laprade P, Petit D (1999) Zinc tolerance and hyper-accumulation are genetically independent characters. Proc R Soc Lond B 266:2175–2179CrossRef
    Marschner H (1993) Zinc uptake from soils. In: Robson AD (ed) Zinc in soils and plants. Kluwer, Dordrecht, pp 59–77CrossRef
    Martens DC, Westermann DT (1991) Fertilizer applications for correcting micronutrient deficiencies. In: Mortvedt JJ, Cox FR, Shuman LM and Welch RM (eds) Micronutrients in agriculture, SSSA book series no 4. Soil Science Society of America, Inc., Madison, pp 549–592
    Mills RF, Francini A, Ferreira da Rocha PSC, Baccarini PJ, Aylett M, Krijger GC, Williams LE (2005) The plant P1B-type ATPase AtHMA4 transports Zn and Cd plays a role in detoxification of transition metals supplied at elevated levels. FEBS Lett 579:783–791CrossRef
    Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud MC (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Nat Acad Sci USA 102:11934–11939CrossRef
    Momonoi K, Yoshida K, Mano S, Takahashi H, Nakamori C, Shoji K, Nitta A, Nishimura M (2009) A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation. Plant J 59:437–447CrossRef
    Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904CrossRef
    Mortvedt JJ (1991) Micronutrient fertilizer technology. In: Mortvedt JJ, Cox FR, Shuman LM and Welch RM (eds) Micronutrients in agriculture, SSSA book series no. 4. Madison, pp 89–112
    Mortvedt JJ, Gilkes RJ (1993) Zinc fertilizers. In: Robson AD (ed) Zinc in soils and plants. Kluwer, Dordrecht, pp 33–44CrossRef
    Neumann D, zur-Nieden U (2001) Silicon and heavy metal tolerance of higher plants. Phytochemistry 56:685–692CrossRef
    Obrador A, Novillo J, Alvarez JM (2003) Mobility and availability to plants of two zinc sources applied to a calcareous soil. Soil Sci Soc Am J 67:564–572CrossRef
    Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340CrossRef
    Paulsen IT, Saier MH (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103CrossRef
    Peck AW, McDonald GK (2010) Adequate zinc nutrition alleviates the adverse effects of heat stress in bread wheat. Plant Soil 337:355–374CrossRef
    Pedas P, Schjoerring JK, Husted S (2009) Identification and characterization of zinc-starvation-induced ZIP transporters from barley roots. Plant Physiol Biochem 47:377–383CrossRef
    Peleg Z, Saranga Y, Yazici A, Fahima T, Ozturk L, Cakmak I (2008) Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil 306:57–67CrossRef
    Perez-Novo C, Bermudez-Couso A, Lopez-Periago E, Fernandez- Calvino D, Arias-Estevez M (2011) Zinc adsorption in acid soils: influence of phosphate. Geoderma 162:358–364CrossRef
    Pfeiffer WH, McClafferty B (2007) Harvest Plus: breeding crops for better nutrition. Crop Sci 47:S88–S105CrossRef
    Phattarakul N, Rerkasem B, Li LJ, Wu LH, Zou CQ, Ram H, Sohu VS, Kang BS, Surek H, Yazici A, Zhang FS, Cakmak I (2012) Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant Soil 361:131–141CrossRef
    Phetsombat S, Kruatrachue M, Pokethitiyook P, Upatham S (2006) Toxicity and bioaccumulation of cadmium and lead in Salvinia cucullata. J Environ Biol 27:645–652
    Pich A, Scholz G (1991) Nicotianamine and the distribution of iron into apoplast and symplast of tomato (Lycopersicon esculentum Mill.). II. Uptake of iron by protoplasts from the variety Bonner Beste and its nicotianamine-less mutant chloronerva and the compartmentation of iron in leaves. J Exp Bot 42:1517–1523CrossRef
    Pollard AJ, Reeves RD, Baker AJM (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217:8–17CrossRef
    Prasad AS (2007) Zinc: mechanisms of host defense. J Nutr 137:1345–1349
    Ram H, Sohu VS, Cakmak I, Singh K, Buttar GS, Sodhi GPS, Gill HS, Bhagat I, Singh P, Dhaliwal SS, Mavi GS (2015) Agronomic fortification of rice and wheat grains with zinc for nutritional security. Curr Sci 109:1171–1176CrossRef
    Ranathunge K, Steudle E, Lafitte R (2005) A new precipitation technique provides evidence for the permeability of Casparian bands to ions in young roots of corn (Zea mays L.) and rice (Oryza sativa L.). Plant Cell Environ 28:1450–1462CrossRef
    Rascio N, Navari-Izzo F (2011) Heavy metal hyper-accumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181CrossRef
    Rattan RK, Deb DL (1981) Self diffusion of zinc and iron in soils as affected by pH, CaCO3, moisture, carrier and phosphorus levels. Plant Soil 63:377–393CrossRef
    Roosens NH, Verbruggen N, Meerts P, Ximenez-Embun P, Smith JAC (2003) Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. Plant Cell Environ 26:1657–1672CrossRef
    Rossi G, Figliolia A, Socciarelli S (2004) Zinc and copper bioaccumulation in Brassica napus at flowering and maturation. Eng Life Sci 4:271–275CrossRef
    Samardjieva KA, Gonçalves RF, Valentão P, Andrade PB, Pissarra J, Pereira S, Tavares F (2014) Zinc accumulation and tolerance in Solanum nigrum are plant growth dependent. Int J Phytoremediat 17:272–279CrossRef
    Samardjieva KA, Tavares F, Pissarra J (2015) Histological and ultrastructural evidence for Zn sequestration in Solanum nigrum L. Protoplasma 252:345–357CrossRef
    Sankaran RP, Ebbs SD (2008) Transport of Cd and Zn to seeds of Indian mustard (Brassica juncea) during specific stages of plant growth and development. Physiol Plant 132:69–78
    Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann JL, Traverse A, Marcus MA, Manceau A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130:1815–1826CrossRef
    Sayre R, Beeching JR, Cahoon EB, Egesi C, Fauquet C, Fellman J, Fregene M, Gruissem W, Mallowa S, Manary M, Maziya-Dixon B, Mbanaso A, Schachtman DP, Siritunga D, Taylor N, Vanderschuren H, Zhang P (2011) The Bio Cassava Plus Program: biofortification of Cassava for Sub-Saharan Africa. Ann Rev Plant Biol 62:251–272CrossRef
    Schutze K, Harter K, Chaban C (2008) Post-translational regulation of plant bZIP factors. Trends Plant Sci 13:247–255CrossRef
    Shanmugam V, Tsednee M, Yeh KC (2012) Zinc tolerance induced by iron 1 reveals the importance of glutathione in the cross-homeostasis between zinc and iron in Arabidopsis thaliana. Plant J 69:1006–1017CrossRef
    Shen ZG, Zhao FJ, McGrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ 20:898–906CrossRef
    Shi R, Zhang Y, Chen X, Sun Q, Zhang F, Romheld V, Zou C (2010) Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). J Cereal Sci 51:165–170CrossRef
    Sinclair SA, Kramer U (2012) The zinc homeostasis network of land plants. Biochim Biophys Acta 1823:1553–1567CrossRef
    Sondergaard TE, Schulz A, Palmgren MG (2004) Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase. Plant Physiol 136:2475–2482CrossRef
    Song WY, Choi KS, Kim DY, Geisler M, Park J, Vincenzetti V, Schellenberg M, Kim SH, Lim YP, Noh EW, Lee Y, Martinoia E (2010) ArabidopsisPCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell 22:2237–2252CrossRef
    Song WY, Martinoia E, Lee J, Kim D, Kim DY, Vogt E, Shim D, Choi KS, Hwang I, Lee Y (2004) A novel family of cys rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiol 135:1027–1039CrossRef
    Stein AJ, Meenakshi JV, Qaim M, Nestel P, Sachdev HPS, Bhutta ZA (2005) Technical monograph4. Analysing the health benefits of biofortified staple crops by means of the disability-adjusted life years approach: A handbook focusing on iron, zinc and vitamin A. HarvestPlus, Washington
    Steudle E (1994) Water transport across roots. Plant Soil 167:79–90CrossRef
    Suzuki M, Tsukamato T, Inoue H, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2008) Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol Biol 66:609–617CrossRef
    Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa Naoko K (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280CrossRef
    Talke IN, Hanikenne M, Kramer U (2006) Zinc dependent global transcriptional control, transcriptional deregulation and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167CrossRef
    Trampczynska A, Kupper H, Meyer-Klaucke M, Schmidt H, Clemens S (2010) Nicotianamine forms complexes with Zn (II) in vivo. Metallomics 2:57–66CrossRef
    Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301CrossRef
    van de Mortel JE, Almar Villanueva L, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Loren Ver, van Themaat E, Koornneef M, Aarts MG (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147CrossRef
    van Tieghem PH (1887) Réseau sus-endodermique de la racine des Cruciférés. Bulletin de la Societé botanique de France. Séance du 25 Mars 1887, pp 125–131
    Vasconcelos M, Datta K, Oliva N, Khalekuzzaman M, Torrizo L, Krishnan S, Oliveira M, Goto F, Datta SK (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164:371–378CrossRef
    Velu G, Singh RP, Huerta-Espino J, Pena-Bautista RJ, Arun B, Mahendru- Singh A, Yaqub Mujahid M, Sohu VS, Mavi GS, Crossa J, Alvarado G, Joshi AK, Pfeiffer WH (2012) Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations. Field Crops Res 137:261–267CrossRef
    Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyper-accumulation in plants. New Phytol 181:759–776CrossRef
    Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312CrossRef
    Volk NJ (1993) The effect of oxidation–reduction potential on plant growth. J Am Soc Agron 31:665–670CrossRef
    Vymazal J, Brezinova T (2015) Heavy metals in plants in constructed and natural wetlands: concentration, accumulation and seasonality. Water Sci Tecchnol 71:268–276CrossRef
    Waters BM, Grusak MA (2008) Whole-plant mineral partitioning throughout the life cycle in Arabidopsis thaliana ecotypes Columbia, Landsberg erecta, Cape Verde Islands, and the mutant line ysl1ysl3. New Phytol 177:389–405
    Waters BM, Chu HH, Di Donato RJ, Roberts LA, Eisley RB, Lahner B, Salt DE, Walker EL (2006) Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiol 141:1446–1458CrossRef
    Waters BM, Uauy C, Dubcovsky J, Grusak MA (2009) Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J Exp Bot 60:4263–4274CrossRef
    Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364CrossRef
    White PJ (2012) Heavy metal toxicity in plants. In: Shabala S (ed) Plant stress physiology. CABI, Wallingford, pp 210–237CrossRef
    White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84CrossRef
    White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080CrossRef
    White PJ, Whiting SN, Baker AJM, Broadley MR (2002) Does zinc move apoplastically to the xylem in roots of Thlaspi caerulescens? New Phytol 153:199–211CrossRef
    World Health Organization (WHO) (2002). The World Health Report (2002) Reducing risks, promoting healthy life. World Health Organization, Geneva
    Yamasaki S, Sakata-Sogawa K, Hasegawa A, Suzuki T, Kabu K, Sato E, Kurosaki T, Yamashita S, Tokunga M, Nishida K, Hirano T (2007) Zinc is a novel intracellular second messenger. J Cell Biol 177:637–645CrossRef
    Yang HQ, Jie YL (2005) Uptake and transport of calcium in plants. J Plant Physiol Mol Biol 31:227–234
    Yen MR, Tseng YH, Saier MH MH (2001) Maize Yellow Stripe1, an iron phytosiderophore uptake transporter, is a member of the oligopeptide transporter (OPT) family. Microbiol 147:2881–2883CrossRef
    Yilmaz A, Ekiz H, Torun B, Gultekin I, Karanlik S, Bagci SA, Cakmak I (1997) Effect of different zinc application methods on grain yield and zinc concentration in wheat grown on zinc-deficient calcareous soils in Central Anatolia. J Plant Nutr 20:461–471CrossRef
    Zelko I, Lux A, Czibula K (2008) Difference in the root structure of hyperaccumulator Thlaspi caerulescens and non-hyperaccumulator Thlaspi arvense. Int J Environ Pollution 33:123–132CrossRef
    Zhang Y, Xu YH, Yi HY, Gong JM (2012) Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J 72:400–410CrossRef
    Zhao FJ, Lombi E, Breedon T, McGrath SP (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ 23:507–514CrossRef
    Zhu YG, Smith SE, Smith FA (2001) Plant growth and cation composition of two cultivars of spring wheat (Triticum aestivum L.) differing in P uptake efficiency. J Exp Bot 52:1277–1282CrossRef
    Zou CQ, Zhang YQ, Rashid A, Ram H, Savasli E, Arisoy RZ, Ortiz-Monasterio I, Simunj S, Wang ZH, Sohu V, Hassan M et al (2012) Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil 361:119–130CrossRef
  • 作者单位:Neha Gupta (1)
    Hari Ram (1)
    Balwinder Kumar (2)

    1. Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
    2. Department of Animal Genetics and Breeding, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, India
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environmental Biotechnology
    Microbiology
    Atmospheric Protection, Air Quality Control and Air Pollution
  • 出版者:Springer Netherlands
  • ISSN:1572-9826
文摘
Zinc (Zn) is an essential micronutrient for plants and animals. Unfortunately, deficiency of Zn in humans has increased on a global scale. The main reason of this micronutrient deficiency is dietary intakes of food with low Zn levels. Adoption of biofortification approaches would result in Zn enrichment of target tissue to a considerable extent. However, there is a basic need to understand Zn absorption mechanisms in plants prior to exploitation of such practical approaches. Zn absorption is a complex physiological trait which is mainly governed by Zn transporters and metal chelators of plant system. Plant growth stage, edaphic factors, season etc. also influence Zn efficiency of particular species. Molecular studies in Zn hyperaccumulators have already demonstrated the participation of specific Zn transporters, vacuolar sequestration and detoxification mechanisms in maintenance of Zn homeostasis. These have been described in detail in present review and provide opportunities for utilization in biofortification programmes. However, issues such as lesser bioavailability of Zn in target organ, uptake of toxic divalent cations (Cd, Ni, Pb, As etc.) along with Zn, sink activity and dilution in Zn concentration in response to sink number etc. in biofortified crops need further investigation. In order to design novel strategy in biofortification programmes, future researches should focus on physiological performance and yield penalties in concerned crop, metabolic load in term of organic acid production and crosstalk of Zn with other mineral nutrients under low and high Zn conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700