用户名: 密码: 验证码:
Prediction for breakup of spiral wave in a regular neuronal network
详细信息    查看全文
  • 作者:Jun Ma ; Ying Xu ; Guodong Ren ; Chunni Wang
  • 关键词:Stability ; Spiral wave ; Neuronal network ; Bifurcation
  • 刊名:Nonlinear Dynamics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:84
  • 期:2
  • 页码:497-509
  • 全文大小:20,274 KB
  • 参考文献:1.Kalyuzhny, M., Kadmon, R., Shnerb, N.M.: A neutral theory with environmental stochasticity explains static and dynamic properties of ecological communities. Ecol. Lett. 18, 572–580 (2015)CrossRef
    2.Layeghifard, M., Makarenkov, V., Peres-Neto, P.R.: Spatial and species compositional networks for inferring connectivity patterns in ecological communities. Glob. Ecol. Biologeogr. 24, 718–727 (2015)CrossRef
    3.Jeppesen, E., Brucet, S., Naselli-Flores, L., et al.: Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750, 201–227 (2015)CrossRef
    4.Upadhyay, R.K., Roy, P., Datta, J.: Complex dynamics of ecological systems under nonlinear harvesting: Hopf bifurcation and Turing instability. Nonlinear Dyn. 79, 2251–2270 (2015)MathSciNet CrossRef MATH
    5.Zhang, T.H., Xing, Y.P., Zang, H., et al.: Spatio-temporal dynamics of a reaction–diffusion system for a predator–prey model with hyperbolic mortality. Nonlinear Dyn. 78, 265–277 (2014)MathSciNet CrossRef
    6.Wang, T.: Pattern dynamics of an epidemic model with nonlinear incidence rate. Nonlinear Dyn. 77, 31–40 (2014)MathSciNet CrossRef MATH
    7.Rao, F.: Spatiotemporal complexity of a three-species ratio-dependent food chain model. Nonlinear Dyn. 76, 1661–1676 (2014)MathSciNet CrossRef MATH
    8.Zhao, H.Y., Huang, X.X., Zhang, X.B.: Turing instability and pattern formation of neural networks with reaction–diffusion terms. Nonlinear Dyn. 76, 115–124 (2014)MathSciNet CrossRef MATH
    9.Sun, G.Q., Li, L., Zhang, Z.K.: Spatial dynamics of a vegetation model in an arid flat environment. Nonlinear Dyn. 73, 2207–2219 (2013)MathSciNet CrossRef
    10.Ma, J., Hu, B.L., Wang, C.N., et al.: Simulating the formation of spiral wave in the neuronal system. Nonlinear Dyn. 73, 73–83 (2013)MathSciNet CrossRef
    11.Sun, G.Q.: Pattern formation of an epidemic model with diffusion. Nonlinear Dyn. 69, 1097–1104 (2012)MathSciNet CrossRef
    12.Liu, P.T., Xue, Y.: Spatiotemporal dynamics of a predator–prey model. Nonlinear Dyn. 69, 71–77 (2012)MathSciNet CrossRef
    13.Cherry, E.M., Fenton, F.H.: Contribution of the Purkinje network to wave propagation in the canine ventricle: insights from a combined electrophysiological–anatomical model. Nonlinear Dyn. 68, 365–SI 379 (2012)CrossRef
    14.Sanguinetti, M.C., Tristani-Firouzi, M.: hERG potassium channels and cardiac arrhythmia. Nature 440, 463–469 (2006)CrossRef
    15.Wolf, M.M., Varigos, G.A., Hunt, D., Sloman, J.G.: Sinus arrhythmia in acute myocardial infarction. Med. J. Aust. 2(2), 52–53 (1978)
    16.Chen, Q.Y., Kirsch, G.E., Zhang, D.M., et al.: Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392, 293–296 (1998)CrossRef
    17.Witkowski, F.X., Leon, L.J., Penkoske, P.A., et al.: Spatiotemporal evolution of ventricular fibrillation. Nature 392, 78–82 (1998)CrossRef
    18.Garfinkel, A., Kim, Y.H., Voroshilovsky, O., et al.: Preventing ventricular fibrillation by flattening cardiac restitution. Proc. Natl. Acad. Sci. USA 97, 6061–6066 (2000)CrossRef
    19.Huang, X.Y., Xu, W.F., Liang, J.M., et al.: Spiral wave dynamics in neocortex. Neuron 68, 978–990 (2010)CrossRef
    20.Schiff, S.J., Huang, X.Y., Wu, J.Y.: Dynamical evolution of spatiotemporal patterns in mammalian middle cortex. Phys. Rev. Lett. 98, 178102 (2007)CrossRef
    21.Ma, J., Huang, L., Ying, H.P., et al.: Spiral wave death, breakup induced by ion channel poisoning on regular Hodgkin–Huxley neuronal networks. Commun. Nonlinear Sci. Numer. Simulat. 17, 4281–4293 (2012)MathSciNet CrossRef MATH
    22.Ma, J., Huang, L., Ying, H.P., et al.: Detecting the breakup of spiral wave in small-world networks of neurons due to channel block. Chin. Sci. Bull. 57, 2094–2101 (2012)CrossRef
    23.Sinha, S., Saramaki, J., Kaski, K.: Emergence of self-sustained patterns in small-world excitable media. Phys. Rev. E 76, 015101 (2007)CrossRef
    24.Perc, M.: Effects of small-world connectivity on noise induced temporal and spatial order in neural media. Chaos Solitons Fractals 31, 280–291 (2007)MathSciNet CrossRef MATH
    25.Wu, Y., Li, J.J., Liu, S.B., et al.: Noise-induced spatiotemporal patterns in Hodgkin–Huxley neuronal network. Cogn. Neurodyn. 7, 431–440 (2013)MathSciNet CrossRef
    26.Guo, D.Q., Wang, Q.Y., Perc, M.: Complex synchronous behavior in interneuronal networks with delayed inhibitory and fast electrical synapses. Phys. Rev. E 85, 061905 (2012)CrossRef
    27.Volman, V., Perc, M., Bazhenov, M.: Gap junctions and epileptic seizures-two sides of the same coin. PLoS ONE 6, e20572 (2011)CrossRef
    28.Song, X.L., Wang, C.N., Ma, J., Tang, J.: Transition of electric activity of neurons induced by chemical and electric autapses. Sci. China Tech. Sci. 58, 1007–1014 (2015)CrossRef
    29.Bekkers, J.M.: Synaptic transmission: a new kind of inhibition. Curr. Biol. 12, R648–R650 (2002)CrossRef
    30.Qin, H.X., Ma, J., Jin, W.Y., et al.: Dynamics of electric activities in neuron and neurons of network induced by autapse. Sci. China Tech. Sci. 57, 936–946 (2014)CrossRef
    31.Qin, H.X., Wu, Y., Wang, C.N., et al.: Emitting waves from defects in network with autapses. Commun. Nonlinear Sci. Numer. Simulat. 23, 164–174 (2015)MathSciNet CrossRef
    32.Huang, L., Ma, J., Tang, J., et al.: Transition of ordered waves in neuronal network by diffusive poisoning of ion channels. J. Biol. Syst. 21, 1350002 (2013)MathSciNet CrossRef MATH
    33.Wu, X.Y., Ma, J., Li, F., et al.: Development of spiral wave in a regular network of excitatory neurons due to stochastic poisoning of ion channels. Commun. Nonlinear Sci. Numer. Simulat. 18, 3350–3364 (2013)MathSciNet CrossRef
    34.Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first-order differential equations. Proc. R. Soc. Lond. B 221(1222), 87–102 (1984)CrossRef
    35.Wang, C.N., Ma, J., Tang, J., et al.: Instability and death of spiral wave in a two-dimensional array of Hindmarsh–Rose neurons. Commun. Theor. Phys. 53, 382–388 (2010)CrossRef
    36.Erichsen Jr, R., Brunnet, L.G.: Multistability in networks of Hindmarsh–Rose neurons. Phys. Rev. E 78, 061917 (2008)CrossRef
  • 作者单位:Jun Ma (1)
    Ying Xu (1)
    Guodong Ren (1)
    Chunni Wang (1)

    1. Department of Physics, Lanzhou University of Technology, Lanzhou, 730050, China
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
Target wave and spiral wave can regulate the collective behaviors of electrical activities in neuronal systems as a powerful ‘pacemaker’. Disordered states occur when normal signal propagation among neurons is disturbed and neuronal disease could be induced. In this paper, a stable rotating spiral wave is developed as initial state that the two-dimensional neuronal network of Hindmarsh–Rose neuron shows distinct periodicity and regularity in space, and then, some parameters are changed sharply to model the destruction effect induced by external large forcing or internal collapse, and the destructed areas will be expanded to occupy a larger area by expanding the damaged boundary in random way. The collapse and instability of spiral wave, ordered states could be predicated by monitoring and analyzing the time series of some nodes. It could be useful to detect the emergence of disaster in some biological or ecological systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700