用户名: 密码: 验证码:
Metabolomic Analysis Provides Insights on Paraquat-Induced Parkinson-Like Symptoms in Drosophila melanogaster
详细信息    查看全文
  • 作者:Arvind Kumar Shukla ; Ch. Ratnasekhar ; Prakash Pragya…
  • 关键词:Drosophila melanogaster ; Metabolomics ; Neurodegeneration ; Parkinson’s disease ; Oxidative stress
  • 刊名:Molecular Neurobiology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:53
  • 期:1
  • 页码:254-269
  • 全文大小:1,678 KB
  • 参考文献:1.Pragya P, Shukla AK, Murthy RC, Abdin MZ, Kar Chowdhuri D (2014) Over-expression of superoxide dismutase ameliorates Cr(VI) induced adverse effects via modulating cellular immune system of Drosophila melanogaster. PLoS ONE 9:e88181CrossRef PubMed PubMedCentral
    2.Sharma A, Mishra M, Ram KR, Kumar R, Abdin MZ, Chowdhuri DK (2011) Transcriptome analysis provides insights for understanding the adverse effects of endosulfan in Drosophila melanogaster. Chemosphere 82:370–376CrossRef PubMed
    3.Sharpe RM, Irvine DS (2004) How strong is the evidence of a link between environmental chemicals and adverse effects on human reproductive health? BMJ 328:447–451CrossRef PubMed PubMedCentral
    4.Cannon JR, Greenamyre JT (2013) Gene-environment interactions in Parkinson’s disease: specific evidence in humans and mammalian models. Neurobiol Dis 57:38–46CrossRef PubMed
    5.Damstra T (1978) Environmental chemicals and nervous system dysfunction. Yale J Biol Med 51:457–468PubMed PubMedCentral
    6.Gibrat C, Saint-Pierre M, Bousquet M, Levesque D, Rouillard C, Cicchetti F (2009) Differences between subacute and chronic MPTP mice models: investigation of dopaminergic neuronal degeneration and alpha-synuclein inclusions. J Neurochem 109:1469–1482CrossRef PubMed
    7.Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AH, Halliday G (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16:653–661CrossRef PubMed
    8.Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301CrossRef PubMed
    9.Freire C, Koifman S (2012) Pesticide exposure and Parkinson’s disease: epidemiological evidence of association. Neurotoxicology 33:947–971CrossRef PubMed
    10.Liou HH, Tsai MC, Chen CJ, Jeng JS, Chang YC, Chen SY, Chen RC (1997) Environmental risk factors and Parkinson’s disease: a case–control study in Taiwan. Neurology 48:1583–1588CrossRef PubMed
    11.Jenner P (2007) Oxidative stress and Parkinson’s disease. Handb Clin Neurol 83:507–520CrossRef PubMed
    12.Beal MF, Matthews RT, Tieleman A, Shults CW (1998) Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3, tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Res 783:109–114CrossRef PubMed
    13.Wersinger C, Sidhu A (2006) An inflammatory pathomechanism for Parkinson’s disease? Curr Med Chem 13:591–602CrossRef PubMed
    14.Schapira AH, Gu M, Taanman JW, Tabrizi SJ, Seaton T, Cleeter M, Cooper JM (1998) Mitochondria in the etiology and pathogenesis of Parkinson’s disease. Ann Neurol 44:S89–S98CrossRef PubMed
    15.Caudle WM, Bammler TK, Lin Y, Pan S, Zhang J (2011) Using ‘omics’ to define pathogenesis and biomarkers of Parkinson’s disease. Expert Rev Neurother 10:925–942CrossRef
    16.Moretto A, Colosio C (2013) The role of pesticide exposure in the genesis of Parkinson’s disease: epidemiological studies and experimental data. Toxicology 307:24–34CrossRef PubMed
    17.Gollamudi S, Johri A, Calingasan NY, Yang L, Elemento O, Beal MF (2012) Concordant signaling pathways produced by pesticide exposure in mice correspond to pathways identified in human Parkinson’s disease. PLoS ONE 7:e36191CrossRef PubMed PubMedCentral
    18.Chaudhuri A, Bowling K, Funderburk C, Lawal H, Inamdar A, Wang Z, O'Donnell JM (2007) Interaction of genetic and environmental factors in a Drosophila parkinsonism model. J Neurosci 27:2457–2467CrossRef PubMed
    19.Peng J, Mao XO, Stevenson FF, Hsu M, Andersen JK (2004) The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway. J Biol Chem 279:32626–32632CrossRef PubMed
    20.Shukla AK, Pragya P, Chaouhan HS, Patel DK, Abdin MZ, Kar Chowdhuri D (2014) A mutation in Drosophila methuselah resists paraquat induced Parkinson-like phenotypes. Neurobiol Aging 35:2419–e1-2419CrossRef PubMed
    21.Zhou C, Huang Y, Przedborski S (2008) Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci 1147:93–104CrossRef PubMed PubMedCentral
    22.Chen CH, Chen SJ, Su CC, Yen CC, Tseng TJ, Jinn TR, Tang FC, Chen KL, Su YC, Lee KI, Hung DZ, Huang CF (2013) Chloroacetic acid induced neuronal cells death through oxidative stress-mediated p38-MAPK activation pathway regulated mitochondria-dependent apoptotic signals. Toxicology 303:72–82CrossRef PubMed
    23.Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22:245–252CrossRef PubMed
    24.Harrigan GG, Goodacre R (2003) Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer Academic Publishers, BostonCrossRef
    25.Kaddurah-Daouk R, Kristal BS, Weinshilboum RM (2008) Metabolomics: a global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol 48:653–683CrossRef PubMed
    26.Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378CrossRef PubMed
    27.Vinayavekhin N, Homan EA, Saghatelian A (2010) Exploring disease through metabolomics. ACS Chem Biol 5:91–103CrossRef PubMed
    28.Wagner C, Sefkow M, Kopka J (2003) Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry 62:887–900CrossRef PubMed
    29.Johansen KK, Wang L, Aasly JO, White LR, Matson WR, Henchcliffe C, Beal MF, Bogdanov M (2009) Metabolomic profiling in LRRK2-related Parkinson’s disease. PLoS One 4:e7551CrossRef PubMed PubMedCentral
    30.Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1:153–161CrossRef PubMed
    31.Odunsi K, Wollman RM, Ambrosone CB, Hutson A, McCann SE, Tammela J, Geisler JP, Miller G, Sellers T, Cliby W, Qian F, Keitz B, Intengan M, Lele S, Alderfer JL (2005) Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics. Int J Cancer 113:782–788CrossRef PubMed
    32.Rozen S, Cudkowicz ME, Bogdanov M, Matson WR, Kristal BS, Beecher C, Harrison S, Vouros P, Flarakos J, Vigneau-Callahan K, Matson TD, Newhall KM, Beal MF, Brown RH Jr, Kaddurah-Daouk R (2005) Metabolomic analysis and signatures in motor neuron disease. Metabolomics 1:101–108CrossRef PubMed PubMedCentral
    33.Yang J, Xu G, Hong Q, Liebich HM, Lutz K, Schmulling RM, Wahl HG (2004) Discrimination of type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles. J Chromatogr B Analyt Technol Biomed Life Sci 813:53–58CrossRef PubMed
    34.Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78CrossRef PubMed PubMedCentral
    35.Milne SB, Mathews TP, Myers DS, Ivanova PT, Brown HA (2013) Sum of the parts: mass spectrometry-based metabolomics. Biochemistry 52:3829–3840CrossRef PubMed PubMedCentral
    36.Mudiam MKR, Ch R, Saxena PN (2013) Gas chromatography–mass spectrometry based metabolomic approach for optimization and toxicity evaluation of earthworm sub-lethal responses to carbofuran. PLoS One 8:e81077
    37.Koek MM, Jellema RH, van der Greef J, Tas AC, Hankemeier T (2011) Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. Metabolomics 7:307–328CrossRef PubMed PubMedCentral
    38.Kuehnbaum NL, Britz-McKibbin P (2013) New advances in separation science for metabolomics: resolving chemical diversity in a post-genomic era. Chem Rev 113:2437–2468CrossRef PubMed
    39.Feany MB (2000) Studying human neurodegenerative diseases in flies and worms. J Neuropathol Exp Neurol 59:847–856PubMed
    40.Hirth F (2010) Drosophila melanogaster in the study of human neurodegeneration. CNS Neurol Disord Drug Targets 9:504–523CrossRef PubMed PubMedCentral
    41.Benford D, Hanley B, Bottrill K, Oehlschlager S, Balls M, Branca F, Castegnaro JJ, Descotes J, Hemminiki K, Lindsay D, Schilter B (2000) Biomarkers as predictive tools in toxicity testing. ATLA 28:119–131
    42.Singh MP, Ram KR, Mishra M, Shrivastava M, Saxena DK, Chowdhuri DK (2010) Effects of co-exposure of benzene, toluene and xylene to Drosophila melanogaster: alteration in hsp70, hsp60, hsp83, hsp26, ROS generation and oxidative stress markers. Chemosphere 79:577–587CrossRef PubMed
    43.Girardot F, Monnier V, Tricoire H (2004) Genome wide analysis of common and specific stress responses in adult Drosophila melanogaster. BMC Genomics 5:74CrossRef PubMed PubMedCentral
    44.De Livera AM, Dias DA, De Souza D, Rupasinghe T, Pyke J, Tull D, Roessner U, McConville M, Speed TP (2012) Normalizing and integrating metabolomics data. Anal Chem 84:10768–10776CrossRef PubMed
    45.Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0–a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40:W127–W133CrossRef PubMed PubMedCentral
    46.Broadhurst DI, Kell DB (2006) Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2:171–196CrossRef
    47.Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer series in statistics, 2nd edn. Springer, New YorkCrossRef
    48.Westerhuis JA, Hoefsloot HC, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, van Duijnhoven JPM, van Dorsten FA (2008) Assessment of PLS-DA cross validation. Metabolomics 4:81–89CrossRef
    49.Xia J, Broadhurst DI, Wilson M, Wishart DS (2013) Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics 9:280–299CrossRef PubMed PubMedCentral
    50.Xia J, Wishart DS (2010) MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 26:2342–2344CrossRef PubMed
    51.Jordan J, Galindo MF, Tornero D, Benavides A, Gonzalez C, Agapito MT, Gonzalez-Garcia C, Cena V (2002) Superoxide anions mediate veratridine-induced cytochrome c release and caspase activity in bovine chromaffin cells. Br J Pharmacol 137:993–1000CrossRef PubMed PubMedCentral
    52.Shukla AK, Pragya P, Chaouhan HS, Tiwari AK, Patel DK, Abdin MZ, Chowdhuri DK (2014) Heat shock protein-70 (Hsp-70) suppresses paraquat-induced neurodegeneration by inhibiting JNK and caspase-3 activation in Drosophila model of Parkinson’s disease. PLoS One 9:e98886CrossRef PubMed PubMedCentral
    53.Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–854CrossRef PubMed
    54.Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRef PubMed
    55.Pragya P, Shukla AK, Murthy RC, Abdin MZ, Kar Chowdhuri D (2014) Characterization of the effect of Cr(VI) on humoral innate immunity using Drosophila melanogaster. Environ Toxicol (Epub)
    56.Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMed
    57.Handel VE (1985) Rapid determination of glycogen and sugars in mosquitoes. J Arut Mosq Corvrnol Assoc 01:299–301
    58.Wang Z, Ferdousy F, Lawal H, Huang Z, Daigle JG, Izevbaye I, Doherty O, Thomas J, Stathakis DG, O'Donnell JM (2011) Catecholamines up integrates dopamine synthesis and synaptic trafficking. J Neurochem 119:1294–1305CrossRef PubMed PubMedCentral
    59.Du G, Liu X, Chen X, Song M, Yan Y, Jiao R, Wang CC (2010) Drosophila histone deacetylase 6 protects dopaminergic neurons against {alpha}-synuclein toxicity by promoting inclusion formation. Mol Biol Cell 21:2128–2137CrossRef PubMed PubMedCentral
    60.Sharma A, Mishra M, Shukla AK, Kumar R, Abdin MZ, Kar Chowdhuri D (2012) Organochlorine pesticide, endosulfan induced cellular and organismal response in Drosophila melanogaster. J Hazard Mater 221–222:275–287CrossRef PubMed
    61.Cai HL, Li HD, Yan XZ, Sun B, Zhang Q, Yan M, Zhang WY, Jiang P, Zhu RH, Liu YP, Fang PF, Xu P, Yuan HY, Zhang XH, Hu L, Yang W, Ye HS (2012) Metabolomic analysis of biochemical changes in the plasma and urine of first-episode neuroleptic-naive schizophrenia patients after treatment with risperidone. J Proteome Res 11:4338–4350CrossRef PubMed
    62.Clements RS Jr, DeJesus PV Jr, Winegrad AI (1973) Raised plasma-myoinositol levels in uraemia and experimental neuropathy. Lancet 1:1137–1141CrossRef PubMed
    63.Ahmed SS, Santosh W, Kumar S, Christlet HT (2009) Metabolic profiling of Parkinson’s disease: evidence of biomarker from gene expression analysis and rapid neural network detection. J Biomed Sci 16:63CrossRef PubMed PubMedCentral
    64.Prestel J, Gempel K, Hauser TK, Schweitzer K, Prokisch H, Ahting U, Freudenstein D, Bueltmann E, Naegele T, Berg D, Klopstock T, Gasser T (2008) Clinical and molecular characterisation of a Parkinson family with a novel PINK1 mutation. J Neurol 255:643–648CrossRef PubMed
    65.van der Knaap MS, Ross B, Valk J (1994) Uses of MR in inborn errors of metabolism. In: Kucharczyk J, Barkovich JA, Moseley M (eds) Magnetic resonance neuroimaging. CRC Press, Inc, pp 246–309
    66.Badar-Goffer RS, Ben-Yoseph O, Bachelard HS, Morris PG (1992) Neuronal-glial metabolism under depolarizing conditions. A 13C-n.m.r. study. Biochem J 282:225–230CrossRef PubMed PubMedCentral
    67.Biden TJ, Wollheim CB, Schlegel W (1986) Inositol 1,4,5-trisphosphate and intracellular Ca2+ homeostasis in clonal pituitary cells (GH3). Translocation of Ca2+ into mitochondria from a functionally discrete portion of the nonmitochondrial store. J Biol Chem 261:7223–7229PubMed
    68.Zaidi A, Fernandes D, Bean JL, Michaelis ML (2009) Effects of paraquat-induced oxidative stress on the neuronal plasma membrane Ca(2+)-ATPase. Free Radic Biol Med 47:1507–1514CrossRef PubMed PubMedCentral
    69.Dunn L, Allen GF, Mamais A, Ling H, Li A, Duberley KE, Hargreaves IP, Pope S, Holton JL, Lees A, Heales SJ, Bandopadhyay R (2014) Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. Neurobiol Aging 35:1111–1115CrossRef PubMed PubMedCentral
    70.Thompson SN, Borchardt DB (2003) Glucogenic blood sugar formation in an insect Manduca sexta L.: asymmetric synthesis of trehalose from 13C enriched pyruvate. Comp Biochem Physiol B Biochem Mol Biol 135:461–471CrossRef PubMed
    71.Shriver LP, Manchester M (2011) Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis. Sci Rep 1:79CrossRef PubMed PubMedCentral
    72.Bus JS, Aust SD, Gibson JE (1976) Paraquat toxicity: proposed mechanism of action involving lipid peroxidation. Environ Health Perspect 16:139–146CrossRef PubMed PubMedCentral
    73.Adibhatla RM, Hatcher JF, Dempsey RJ (2006) Lipids and lipidomics in brain injury and diseases. AAPS J 8:E314–E321CrossRef PubMed PubMedCentral
    74.Coyle FE (1995) Substrate utilization during exercise in active people13. Am J Clin Nutr 61:968S–979SPubMed
    75.Fabelo N, Martin V, Santpere G, Marin R, Torrent L, Ferrer I, Diaz M (2011) Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson’s disease and incidental Parkinson’s disease. Mol Med 17:1107–1118CrossRef PubMed PubMedCentral
    76.Paik MJ, Cho IS, Jung IM, Lee G, Kim KR (2008) Altered free amino acid levels in brain cortex tissues of mice with Alzheimer’s disease as their N(O, S)-ethoxycarbonyl/tert-butyldimethylsilyl derivatives. BMB Rep 41:23–28CrossRef PubMed
    77.Lopez-Corcuera B, Geerlings A, Aragon C (2001) Glycine neurotransmitter transporters: an update. Mol Membr Biol 18:13–20CrossRef PubMed
    78.Sur C, Kinney GG (2014) Glycine transporter 1 inhibitors and modulation of NMDA receptor-mediated excitatory neurotransmission. Curr Drug Targets 8:643–649CrossRef
    79.Shimizu K, Matsubara K, Ohtaki K, Fujimaru S, Saito O, Shiono H (2003) Paraquat induces long-lasting dopamine overflow through the excitotoxic pathway in the striatum of freely moving rats. Brain Res 976:243–252CrossRef PubMed
    80.Nicholls DG (2009) Mitochondrial calcium function and dysfunction in the central nervous system. Biochim Biophys Acta 1787:1416–1424CrossRef PubMed PubMedCentral
    81.Greenamyre JT, O'Brien CF (1991) N-Methyl-d -aspartate antagonists in the treatment of Parkinson’s disease. Arch Neurol 48:977–981CrossRef PubMed
    82.Xue JG, Masuoka T, Gong XD, Chen KS, Yanagawa Y, Law SK, Konishi S (2011) NMDA receptor activation enhances inhibitory GABAergic transmission onto hippocampal pyramidal neurons via presynaptic and postsynaptic mechanisms. J Neurophysiol 105:2897–2906CrossRef PubMed
    83.Abbott RJ, Pye IF, Nahorski SR (1982) CSF and plasma GABA levels in Parkinson’s disease. J Neurol Neurosurg Psychiatry 45:253–256CrossRef PubMed PubMedCentral
    84.Shen L, Ji HF (2013) Low uric acid levels in patients with Parkinson’s disease: evidence from meta-analysis. BMJ Open 3:e003620CrossRef PubMed PubMedCentral
    85.Annanmaki T, Muuronen A, Murros K (2007) Low plasma uric acid level in Parkinson’s disease. Mov Disord 22:1133–1137CrossRef PubMed
    86.Yong VW, Perry TL, Krisman AA (1986) Depletion of glutathione in brainstem of mice caused by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine is prevented by antioxidant pretreatment. Neurosci Lett 63:56–60CrossRef PubMed
    87.Sofic E, Lange KW, Jellinger K, Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142:128–130CrossRef PubMed
    88.Fridovich I (1997) Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J Biol Chem 272:18515–18517CrossRef PubMed
    89.Nagatsu T, Sawada M (2007) Biochemistry of postmortem brains in Parkinson’s disease: historical overview and future prospects. J Neural Transm Suppl 72:113–120CrossRef PubMed
    90.Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389CrossRef PubMed
  • 作者单位:Arvind Kumar Shukla (1)
    Ch. Ratnasekhar (2) (3)
    Prakash Pragya (1)
    Hitesh Singh Chaouhan (1) (3)
    Devendra Kumar Patel (2) (3)
    Debapratim Kar Chowdhuri (1) (3)
    Mohana Krishna Reddy Mudiam (2) (3)

    1. Embryotoxicology Section, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
    2. Analytical Chemistry Section, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
    3. Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
文摘
Paraquat (PQ) exposure causes degeneration of the dopaminergic neurons in an exposed organism while altered metabolism has a role in various neurodegenerative disorders. Therefore, the study presented here was conceived to depict the role of altered metabolism in PQ-induced Parkinson-like symptoms and to explore Drosophila as a potential model organism for such studies. Metabolic profile was generated in control and in flies that were fed PQ (5, 10, and 20 mM) in the diet for 12 and 24 h concurrent with assessment of indices of oxidative stress, dopaminergic neurodegeneration, and behavioral alteration. PQ was found to significantly alter 24 metabolites belonging to different biological pathways along with significant alterations in the above indices. In addition, PQ attenuated brain dopamine content in the exposed organism. The study demonstrates that PQ-induced alteration in the metabolites leads to oxidative stress and neurodegeneration in the exposed organism along with movement disorder, a phenotype typical of Parkinson-like symptoms. The study is relevant in the context of Drosophila and humans because similar alteration in the metabolic pathways has been observed in both PQ-exposed Drosophila and in postmortem samples of patients with Parkinsonism. Furthermore, this study provides advocacy towards the applicability of Drosophila as an alternate model organism for pre-screening of environmental chemicals for their neurodegenerative potential with altered metabolism.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700