用户名: 密码: 验证码:
Effect of loss and coupling on the resonance of metamaterial: An equivalent circuit approach
详细信息    查看全文
  • 作者:YongGang Zhang (1) (2)
    JingBo Wu (1)
    LanJu Liang (1)
    GaoChao Zhou (1)
    BiaoBing Jin (1)
    YiJun Feng (3)
  • 关键词:metamaterials ; equivalent circuit ; resonant property ; coupling ; frequency splitting ; 浜哄伐鐢电鏉愭枡 ; 鐢佃矾妯″瀷 ; 璋愭尟鐗规€?/li> 鑰﹀悎 ; 棰戠巼鍔堣
  • 刊名:SCIENCE CHINA Information Sciences
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:57
  • 期:12
  • 页码:1-8
  • 全文大小:838 KB
  • 参考文献:1. Tao H, Padilla WJ, Zhang X, et al. Recent progress in electromagnetic metamaterial devices for terahertz applications. IEEE J Sel Top Quantum Electron, 2010, 99: 1鈥?0
    2. Liu Y, Zhang X. Metamaterials: A new frontier of science and technology. Chem Soc Rev, 2011, 40: 2494鈥?507 CrossRef
    3. Veselago V G. The electrodynamics of substances with simultaneously negative values of / 蓻 and 碌. Sov Phys Usp, 1968, 10: 509鈥?14 CrossRef
    4. Christos A, Nasim M E, Francesco M, et al. Negative refraction, gain and nonlinear effects in hyperbolic metamaterials, Opt Express, 2013, 21: 15037鈥?5047 CrossRef
    5. Xu T, Amit A, Maxim A, et al. All-angle negative refraction and active flat lensing of ultraviolet light. Nature, 2013, 497: 470鈥?74 CrossRef
    6. Alexander P, Ivan I, Pavel B, et al. Hyperbolic metamaterials. Nat Photon, 2013, 7: 948鈥?57 CrossRef
    7. Wang Z B, Feng Y J, Zhao J M, et al. Analog study of near-field focusing and subwavelength imaging with nonlinear transmission-line metamaterial. Sci China Inf Sci, 2013, 56: 120407(8)
    8. Xu S, Wang Y, Zhang B L, et al. Invisibility cloaks from forward design to inverse design. Sci China Inf Sci, 2013, 56: 120408(11)
    9. Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314: 977鈥?80 CrossRef
    10. Shao J, Chen P, Wu R X, et al. Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial. Appl Phys Lett, 2013, 102: 034106 CrossRef
    11. Jin B B, Wu J B, Zhang C H, et al. Enhanced slow light in superconducting electromagnetically induced transparency metamaterials. Supercond Sci Technol, 2013, 26: 074004 CrossRef
    12. Meng C, Peng R W, Fan R H, et al. Making structured metals transparent for broadband electromagnetic waves. Sci China Inf Sci, 2013, 56: 120409(9)
    13. Yanchuk B L, Zheludev N I, Halas N J, et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater, 2010, 9: 707鈥?15 CrossRef
    14. Cao W, Singh R, Naib I A I A, et al. Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. Opt Lett, 2012, 37: 3366鈥?368 CrossRef
    15. Husu H, Canfield B K, Laukkanen J, et al. Chiral coupling in gold nanodimers. Appl Phys Lett, 2008, 93: 183115 CrossRef
    16. Li Z F, Caglayan H, Colak E, et al. Coupling effect between two adjacent chiral structure layers. Opt Express, 2010, 9: 5375鈥?377 CrossRef
    17. Huang C, Feng Y J, Zhao J M, et al. Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures. Phys Rev B, 2012, 85: 195131 CrossRef
    18. Liu H, Cao J X, Zhu S N, et al. Lagrange model for the chiral optical properties of stereometamaterials. Phy Rev B, 2010, 81: 241403 CrossRef
    19. Liu N, Liu H, Zhu S N, et al. Stereometamaterials. Nat Photon, 2009, 3: 157鈥?62 CrossRef
    20. Liu H, Genov D A, Wu D M, et al. Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures. Phys Rev B, 2007, 76: 073101 CrossRef
    21. Liu M, Chen P. Study on resonance modes separation of metallic split ring resonator pair at microwave frequencies (in Chinese). J Microwaves, 2010, 27: 1, 71鈥?4
    22. Xiong X, Sun W H, Bao Y J, et al. Switching the electric and magnetic responses in a metamaterial. Phys Rev B, 2009, 80: 201105 CrossRef
  • 作者单位:YongGang Zhang (1) (2)
    JingBo Wu (1)
    LanJu Liang (1)
    GaoChao Zhou (1)
    BiaoBing Jin (1)
    YiJun Feng (3)

    1. Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
    2. School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, 232001, China
    3. Department of Electronic Engineering, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
  • ISSN:1869-1919
文摘
In this work we establish an equivalent circuit model to analyze the resonace of the metamaterial considering the loss of the unit cell and coupling effect between them. From this model, we find that metamaterial can be divided into three categories: weak, critical and strong couplings, depending on the values of the loss and coupling strength, where the different resonant properties are presented. The physical reason of the division is whether the loss in each unit cell can be offset by energy coupling from the adjunct unit cells. Full-wave electromagnetic simulations have also been carried out to verify the equivalent circuit analysis. Our circuit analysis provides a simple and effective way to understand the coupling of the metamaterial and gives guidance for the analysis and design of the metamaterial.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700