用户名: 密码: 验证码:
Predicting extrusion instabilities of commercial polyethylene from non-linear rheology measurements
详细信息    查看全文
  • 作者:Febin Cyriac (1)
    José A. Covas (1)
    Loic Hugues Gilles Hilliou (1)
    Iakovos Vittorias (2)
  • 关键词:Polyethylene ; Instabilities ; Fourier ; Transform ; rheology (FT ; rheology) ; LAOS ; Non ; linear rheology
  • 刊名:Rheologica Acta
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:53
  • 期:10-11
  • 页码:817-829
  • 全文大小:1,809 KB
  • 参考文献:1. Ansari M, Hatzikiriakos SG, Sukhadia AM, Rohlfing DC (2011) Rheology of ZN and metallocene HDPE: broad molecular weight distribution effects. Rheol Acta 50:17-7 CrossRef
    2. Ansari M, Inn YW, Sukhadia AM, DeLauriers PJ, Hatzikiriakos SG (2013a) Melt fracture of HDPEs: metallocene versus Ziegler–Natta and broad MWD effects. Rheol Acta 53:4195-201
    3. Ansari M, Inn YW, Sukhadia AM, DeLauriers PJ, Hatzikiriakos SG (2013b) Wall slip of HDPEs: molecular weight and molecular weight distribution. J Rheol 57:927-48 CrossRef
    4. Ansari M, Inn YW, Sukhadia AM, DesLauriers PJ, Hatzikiriakos SG (2012) Melt fracture of HDPEs: metallocene versus Ziegler–Natta and broad MWD effects. Polymer 53:4195-201 CrossRef
    5. Baumgaertel M, Winter HH (1989) Determination of discrete relaxation and retardation time spectra from dynamic mechanical data. Rheol Acta 28:511-19 CrossRef
    6. Chen YL, Larson RG, Patel SS (1994) Shear fracture of polystyrene melts and solutions. Rheol Acta 33:243-56 CrossRef
    7. Cogswell FN (1977) Stretching flow instabilities at the exits of extrusion dies. J Non-Newton Fluid 2:37-7 CrossRef
    8. Denn MM (2001) Extrusion instabilities and wall slip. Annu Rev Fluid Mech 33:265-87 CrossRef
    9. Ewoldt RH, Hosoi AE, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52:1427-458 CrossRef
    10. Fahimi Z, Broedersz CP, van Kempen THS, Florea D, Peters GWM, Wyss HM (2014) A new approach for calculating the true stress response from large amplitude oscillatory shear (LAOS) measurements using parallel plates. Rheol Acta 53:75-3 CrossRef
    11. Filipe S, Vittorias I, Wilhelm M (2008) Experimental correlation between mechanical non-linearity in LAOS flow and capillary flow instabilities for linear and branched commercial polyethylenes. Macromol Mater Eng 293:57-5 CrossRef
    12. Graham MD (1995) Wall slip and the nonlinear dynamics of large amplitude oscillatory shear flows. J Rheol 39:697-12 CrossRef
    13. Hatzikiriakos SG (2012) Wall slip of molten polymers. Prog Polym Sci 37:624-43 CrossRef
    14. Hatzikiriakos SG, Dealy JM (1991) Wall slip of molten high density polyethylene. I. Sliding plate rheometer studies. J Rheol 35:497-23 CrossRef
    15. Hatzikiriakos SG, Dealy JM (1992) Role of slip and fracture in the oscillating flow of HDPE in a capillary. J Rheol 36:845-84 CrossRef
    16. Henson DJ, Mackay ME (1995) Effect of gap on the viscosity of monodisperse polystyrene melts: slip effects. J Rheol 39:359-73 CrossRef
    17. Hyun K, Wilhelm M (2009) Establishing a new mechanical nonlinear coefficient Q from FT-rheology: first investigation of entangled linear and comb polymer model systems. Macromolecules 42:411-22 CrossRef
    18. Hyun K, Wilhelm M, Klein CO, Choc KS, Nam JG, Ahn KH, Leed SJ, Ewoldt RH, McKinley GH (2011) A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36:1697-753
文摘
Processing at the highest possible throughput rates is essential from an economical point of view. However, various flow instabilities and extrudate distortions like sharkskin, stick slip, and gross melt fracture (GMF) may limit the production rate of high-quality products. Predicting the process conditions leading to the occurrence of rheological instabilities is the key for improving product quality, process control, and optimization. Large-amplitude oscillatory shear (LAOS) and FT-rheology were used to quantify the non-linear rheological behavior and instabilities of a series of well-characterized commercial polyethylene (PE). From the latter, we derive the critical non-linearity parameter, F 0,c, which corresponds to the normalized intensity of the third harmonic at the critical strain amplitude, γ 0,C (defined by the appearance of the second harmonic), normalized by γ 0,C . The F 0,c is correlated with the high molecular mass fraction of the polymers and with the Deborah numbers. Linear rheological parameters and molecular structures were related to F 0,c. An experimental correlation between F 0,c of commercial PE melts and pressure fluctuations associated with flow instabilities (sharkskin) was established both for capillary rheometry and extrusion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700