用户名: 密码: 验证码:
Single-crystal Raman spectra of YAlO3 and GdAlO3: comparison to several orthorhombic ABO3 perovskites
详细信息    查看全文
  • 作者:Anastasia Chopelas (1) chopelas@ucla.edu
  • 关键词:Perovskite – ; Raman spectroscopy – ; YAlO3 – ; GdAlO3
  • 刊名:Physics and Chemistry of Minerals
  • 出版年:2011
  • 出版时间:October 2011
  • 年:2011
  • 卷:38
  • 期:9
  • 页码:709-726
  • 全文大小:2.1 MB
  • 参考文献:1. Abrashev MV, Backstrom J, Borjesson L, Popov VN, Chakalov RA, Kolev N, Meng R-L, Iliev MN (2002) Raman spectroscopy of CaMnO3: mode assignment and relationship between Raman line intensities and structural distortions. Phys Rev B 65:184301
    2. Ahtee M, Ahtee A (1979) A qualitative X-ray powder diffraction study of the structures of strontium-barium zirconate solid solutions at room temperature. Phase Trans 1:49–60
    3. Andreasson J, Holmlund J, Rauer R, Kaell M, Boerjesson L, Knee CS, Eriksson AK, Eriksson S-G, Ruebhausen M, Chaudhury RP (2008) Electron-phonon interactions in perovskites containing Fe and Cr studied by Raman scattering using oxygen-isotope and cation substitution. Phys Rev B 78:235103
    4. Balachandran U, Eror NG (1982a) Laser-induced Raman scattering in calcium titanate. Sol St Comm 44:815–818
    5. Balachandran U, Eror NG (1982b) Raman spectra of strontium titanate. J Am Ceram Soc 65:54–56
    6. Bersani D, Lottici PP, Canali M, Montenero A, Gnappi G (1997) Sol-gel preparation and Raman characterization of CdTiO3. J Sol–Gel Sci Technol 8:337–342
    7. Biegalski MD, Haeni JH, Trolier-McKinstry S, Schlom DG, Brandle CD, Ven Graitis AJ (2005) Thermal expansion of the new perovskite substrates DyScO3 and GdScO3. J Mat Res 20:952–958
    8. Chaix-Pluchery O, Kreisel J (2009) Raman scattering of perovskite DyScO3 and GdScO3 single crystals. J Phys Cond Matt 21:175901 (pp 1–5)
    9. Chaudhury S, Parida SC, Pillai KT, Mudher KDS (2007) High-temperature X-ray diffraction and specific heat studies on GdAlO3, Gd3Al5O12 and Gd4Al2O9. J Sol St Chem 180:2393–2399
    10. Chopelas A (1991) Single-crystal Raman spectra of forsterite, fayalite, and montecellite. Am Mineral 76:1101–1109
    11. Chopelas A (1996) Thermal expansivity of lower mantle phases MgO and MgSiO3 perovskite at high pressure derived from vibrational spectroscopy. Phys Earth Planet Inter 98:3–15
    12. Chopelas A (1999) Estimates of mantle relevant Clapeyron slopes in the MgSiO3 system from high pressure spectroscopic data. Am Mineral 84:233–245
    13. Chopelas A (2000) Is the extrapolation of mineral physical properties to mantle conditions valid? Phase changes detected by vibrational spectroscopy and their effect on thermodynamic parameters. Eos, Trans Am Geophys Union 81:1153
    14. Chopelas A, Boehler R, Ko J (1994) Thermodynamics and behavior of γ-Mg2SiO4 at high pressure: implications for Mg2SiO4 phase equilibrium. Phys Chem Miner 21:351–359
    15. Durben DJ, Wolf GH (1992) High-temperature behavior of metastable MgSiO3 perovskite: a Raman spectroscopic study. Am Mineral 77:890–893
    16. Durben DJ, Wolf GH, McMillan P (1991) Raman scattering study of the high-temperature vibrational properties and stability of CaGeO3 perovskite. Phys Chem Miner 18:215–223
    17. Garcia-Munoz JL, Rodriguez-Carvajal J, Lacorre P, Torrance JB (1992) Neutron-diffraction study of RNiO3 (R = La, Pr, Nd, Sm): electronically induced structural changes across the metal-insulator transition. Phys Rev B 46:4414–4425
    18. Geller S, Wood EA (1956) Crystallographic studies of perovskite-like compounds. I. Rare earth orthoferrites and YFeO3, YCrO3, and YAlO3. Acta Cryst 9:563–568
    19. Glazer AM (1972) The classification of tilted octahedra in perovskites. Acta Cryst B28:3384–3392
    20. Gouadec G, Colomban P, Piquet N, Trichet MF, Mazerolles L (2005) Raman/Cr3+ fluorescence mapping of a melt-grown Al2O3/GdAlO3 eutectic. J Eur Ceram Soc 25:1447–1453
    21. Gupta HC, Ashdhir P (1999) Zone center phonons of orthorhombic perovskite YAlO3. J Sol St Chem 146:287–290
    22. Gurunathan K, Vyawahare N, Amalnerkar DP (2005) Synthesis and characterization of CaRuO3 and SrRuO3 for resistor paste application. J Mat Sci Mat Electron 16:47–53
    23. Iliev MN, Abrashev MV, Lee H-G, Popov VN, Sun YY, Thomsen C, Meng RL, Chu CW (1998) Raman active phonons in orthorhombic YMnO3 and LaMnO3. J Phys Chem Solid Spectrosc Novel Supercond 59:1982–1984 (14–18 Sept 1997)
    24. Iliev MN, Abrashev MV, Lee H-G, Popov VN, Sun YY, Thomsen C, Meng RL, Chu CW (1998b) Raman spectroscopy of orthorhombic perovskitelike YMnO3 and LaMnO3. Phys Rev B 57:2872–2877
    25. Iliev MN, Litvinchuk AP, Lee H-G, Chen CL, Dezaneti ML, Chu CW, Ivanov VG, Abrashev MV, Popov VN (1999) Raman spectroscopy of SrRuO3 near the paramagnetic-to-ferromagnetic phase transition. Phys Rev B 59:364–368
    26. Inagaki T, Miura K, Yoshida H, Fujita J, Nishimura M (1999) Raman studies of LaGaO3 and doped LaGaO3. Sol St Ion Diff React 118:265–269
    27. Jandl S, Barilo SN, Shiryaev SV, Mukhin AA, Ivanov VY, Balbashov AM (2003) Study of Raman active phonons in NdMnO3. Thermochimica Acta 264:36–43
    28. Kamegashira N, Miyazaki Y (1983) Jahn-Teller transition in NdMnO3. Physica Status Solidi (A) 76:K39–K42
    29. Kamishima O, Hattori T, Ohta K, Chiba Y, Ishigame M (1999) Raman scattering of single-crystal SrZrO3. J Phys Cond Mat 11:5355–5365
    30. Karki BB, Wentzcovitch RM, de Gironcoli S, Baroni S (2000) Ab initio lattice dynamics of MgSiO3 perovskite at high pressure. Phys Rev B 62:14750–14756
    31. Kolev N, Chen CL, Gospodinov M, Bontchev RP, Popov VN, Litvinchuk AP, Abrashev MV, Hadjiev VG, Iliev MN (2002) Raman spectroscopy of CaRuO3. Phys Rev B 66:4
    32. Krivchikov AI, Gorodilov BY, Kolobov IG, Erenburg AI, Savitskii DI, Ubizskii SB, Syvorotka IM, Vasilechko LO (2000) Structure, sound velocity, and thermal conductivity of the perovskite NdGaO3. Low Temp Phys 26:370–374
    33. Loridant S, Abello L, Lucazeau G (1997) Polarized Raman spectra of single crystals of BaCeO3. J Raman Spec 28:283–288
    34. Manoharan SS, Patil KC (1989) A new route to the synthesis of rare earth orthochromites. Crystal properties and preparation 1989 fifth international conference on ferrites, vol 27-30. 10–13 Jan 1989. pp 1179–1183
    35. Marezio M, Dernier PD, Remeika JP (1972) The crystal structures of orthorhombic SmAlO3 and of trigonal NdAlO3. J Sol St Chem 4:11–19
    36. Martin-Carron L, de Andres A (2001) Raman phonons and the Jahn-Teller transition in RMnO3 manganites. J Alloys Compd 323(324):417–421 (4th international conference on F-elements, 17–21 Sept 2000)
    37. Meng J, Zou G, Cui Q, Zhu Z, Du Z (1994) Raman spectra and pressure induced phase transition in nanocrystalline PbZrO3. Sol St Comm 91:519–521
    38. Moussa F, Hennion M, Rodriguez-Carvajal J, Moudden H, Pinsard L, Revcolevschi A (1996) Spin waves in the antiferromagnet perovskite LaMnO3: a neutron-scattering study. Phys Rev B 54:15149–15155
    39. Orera VM, Pecharroman C, Pena JI, Merino RI, Serna CJ (1998) Vibrational spectroscopy of CaZrO3 single crystals. J Phys Cond Matt 10:7501–7510
    40. pai-Hsuan S, Nakamura T, Yue Jin S, Inaguma Y, Itoh M (1998) The study on the dielectric property and structure of perovskite titanate CdTiO3. Ferroelectrics 217:137–145
    41. Poeppelmeier KR, Leonowicz ME, Scanlon JC, Longo JM, Yelon WB (1982) Structure determination of CaMnO3 and CaMnO2.5 by X-ray and neutron methods. J Sol St Chem 45:71–79
    42. Rani N, Gohel VB, Gupta HC (2000) Zone center wavenumbers of the orthorhombic LaGaO3 perovskite. J Raman Spec 31:877–880
    43. Ross N, Angel RJ (1999) Compression of CaTiO3 and CaGeO3 perovskites. Am Mineral 84:277–281
    44. Ross NL, Chaplin TD (2003) Compressibility of CaZrO3 perovskite: comparison with Ca-oxide perovskites. J Sol St Chem 172:123–126
    45. Ross NL, Hazen RM (1989) Single crystal X-ray diffraction study of MgSiO3 perovskite from 77 to 400 K. Phys Chem Miner 16:415–420
    46. Ross N, Zhao J, Angel RJ (2004a) High-pressure structural behavior of GdAlO3 and GdFeO3 perovskites. J Sol St Chem 177:3768–3775
    47. Ross NL, Zhao J, Angel RJ (2004b) High-pressure single-crystal X-ray diffraction study of YAlO3 perovskite. J Sol St Chem 177:1276–1284
    48. Saine MC, Husson E (1984) Vibrational study of rare earth aluminates and gallates. IV. Aluminates of samarium and europium. Spectrochim Acta A 40A:733–738
    49. Sanjuan ML, Orera VM, Merino RI, Blasco J (1998) Raman and x-ray study of La1−xNdxGaO3 (0 ≤ x ≤ 1) perovskite solid solutions. J Phys Cond Mat 10:11687–11702
    50. Sasaki S, Prewitt CT, Liebermann RC (1983) The crystal structure of CaGeO3 perovskite and the crystal chemistry of the GdFeO3-type perovskites. Am Mineral 68:1189–1198
    51. Scherban T, Villeneuve R, Abello L, Lucazeau G (1992) Raman scattering study of BaCeO3 and SrCeO3. Sol St Comm 84:341–344
    52. Scott JF, Remeika JP (1970) High-temperature Raman study of samarium aluminate. Phys Rev B 1:4182–4185
    53. Shishido T, Nojima S, Tanaka M, Horiuchi H, Fukuda T (1995) Flux growth of perovskite-type RAlO3 single crystals. J Alloys Comp 227:175–179
    54. Suda J, Mori T, Saito H, Kamishima O, Hattori T, Sato T (2002) First-order Raman spectra and lattice dynamics of a NdGaO3 crystal. Phys Rev B 66:174301 (pp 1–9)
    55. Suda J, Kamishima O, Hamaoka K, Matsubara I, Hattori T, Sato T (2003) The first-order Raman spectra and lattice dynamics for YAlO3 crystal. J Phys Soc Japan 72:1418–1422
    56. Tompsett GA, Phillips RJ, Sammes NM, Cartner AM (1998) Characterization of LaGdO3 by X-ray powder diffraction and Raman spectroscopy. Sol St Comm 108:655–660
    57. Tompsett GA, Sammes NM, Phillips RJ (1999) Raman spectroscopy of the LaGaO3 phase transition. J Raman Spec 30:497–500
    58. Udagawa M, Kohn K, Koshizuka N, Tsushima T, Tsushima K (1975) Influence of magnetic ordering on the phonon Raman spectra in YCrO3 and GdCrO3. Sol St Comm 16:779–783
    59. Vali R (2007) Vibrational, dielectric and scintillation properties of YAIO3. J Lumin 127:727–730
    60. Vasylechko L, Matkovski A, Suchocki A, Savytskii D, Syvorotka I (1999) Crystal structure of LaGaO3 and (La,Gd)GaO3 solid solutions. J Alloys Compd 286:213–218 (4th international school and symposium on synchrotron radiation in natural science, 15–20 June 1998)
    61. Venugopalan S, Becker MM (1990) Raman scattering study of LuFeO3. J Chem Phys 93:3833–3836
    62. Venugopalan S, Dutta M, Ramdas AK, Remeika JP (1985) Magnetic and vibrational excitations in rare-earth orthoferrites: a Raman scattering study. Phys Rev B 31:1490–1497
    63. Wang L, Zhang X (2002) Pressure dependence of phase transition in undoped LaMnO3. Physica C 371:330–338
    64. Yamanaka S, Hamaguchi T, Oyama T, Matsuda T, Kobayashi S, Kurosaki K (2003) Heat capacities and thermal conductivities of perovskite type BaZrO3 and BaCeO3. J Alloys Comp 359:1–4
    65. Yoshii K (2001) Magnetic properties of perovskite GdCrO3. J Sol St Chem 159:204–208
    66. Yuzyuk YI, Simon P, Gagarina F, Hennet I, Thiaudiere D, Torgashev VI, Raevskaya SI, Raevskii IP, Resnitchenko IA, Sauvajol JI (2005) Modulated phases in NaNbO3: Raman scattering, synchrotron x-ray diffraction, dielectric investigations. J Phys Cond Mat 17:4977–4990
    67. Zaghrioui M, Bulou A, Laffez P, Lacorre P (2000) Raman study of metal-insulator transition in NdNiO3 thin films. J Magnes Magn Mat 211:238–242 (E-MRS Spring Meeting 1999—Symposium G: Material Physics Issues and Applications of Magnetic Oxides, 1–Jun 4 1999)
    68. Zaghrioui M, Bulou A, Lacorre P, Laffez P (2001) Electron diffraction and Raman scattering evidence of a symmetry breaking at the metal-insulator transition of NdNiO3. Phys Rev B 64:081101–081102
    69. Zhao J, Ross N, Angel RJ (2004) New view of the high-pressure behaviour of GdFeO3-type perovskites. Acta Cryst B60:263–271
  • 作者单位:1. Department of Earth and Space Sciences, Institute of Geophysics, University of California, Box 951567, Los Angeles, CA 90095-1567, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Mineralogy
    Crystallography
    Geochemistry
    Mineral Resources
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2021
文摘
Room-temperature-polarized single-crystal Raman spectra have been measured for both GdAlO3 and YAlO3. Both aluminates crystallize in the orthorhombic (Pbnm) perovskite structure. Of the 24 possible Raman modes in 4 symmetries, 20 and 17 modes were observed for gadolinium and yttrium aluminates, respectively. Comparisons of the Raman spectra of these two aluminates to those of 28 other orthorhombic ABO3 perovskites revealed remarkably similar spectral patterns, regardless of chemistry or valency of the cations. Closer examination of the effect of mass, valencies, and size of the cations on the Raman spectra versus composition revealed that for the observed modes, the A cation plays the dominant role in determining the Raman shift. In particular, the one to two lowest energy modes in each symmetry are determined by cation mass and valency no matter what the chemistry. For some perovskites with common A cations, higher energy modes were also strikingly similar. In particular, the calcium perovskites had almost all Ag modes at the same energies despite the greatly varying B cations. The second to the lowest mode in Ag and B1g depended only on A cation mass for all perovskites. The volume plays a minor role throughout but is hard to separate from mass effects because the most massive cations are also the largest. However, if the B-cation is common, for example, aluminates or ferrites, the volume has a minor effect on the higher energy modes. These trends were not observed for all perovskites. Notable exceptions were found if a perovskite is near a phase transition or metastable, as found for three manganites. The effect of increased valency of the A cation from 2–4 to 3–3 perovskites expresses itself as relatively larger Raman shifts for the lowest energy modes. Analog studies of MgSiO3 perovskites should be undertaken with only 2–4 perovskites. The increased understanding for the mode distributions of perovskites allows for better estimates of their thermodynamic properties through vibrational modeling.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700