用户名: 密码: 验证码:
A High Throughput/Gate AES Hardware Architecture by Compressing Encryption and Decryption Datapaths
详细信息    查看全文
  • 关键词:AES ; Hardware architectures ; Unified encryption/decryption architecture ; CBC mode
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:9813
  • 期:1
  • 页码:538-558
  • 全文大小:1,161 KB
  • 参考文献:1.Cryptographic hardware project. http://​www.​aoki.​ecei.​tohoku.​ac.​jp/​crypto/​
    2.NanGate FreePDK15 open cell library, January 2016. http://​www.​nangate.​com/​?​page_​id=​2328
    3.NanGate FreePDK45 open cell library, January 2016. http://​www.​nangate.​com/​?​page_​id=​2325
    4.Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 326–343. Springer, Heidelberg (2014)
    5.Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-offs for threshold implementations illustrated on AES. IEEE Trans. Comput. Aided Des. Integr. Syst. 34(7), 1188–1200 (2015)CrossRef MATH
    6.Boyer, J., Matthews, P., Peralta, P.: Logic minimization techniques with applications to cryptology. J. Cryptology 47, 280–312 (2013)MathSciNet CrossRef MATH
    7.Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)CrossRef
    8.Canright, D.: http://​faculty.​nps.​edu/​drcanrig/​
    9.Canright, D., Batina, L.: A very compact “Perfectly Masked” S-Box for AES. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 446–459. Springer, Heidelberg (2008)CrossRef
    10.Hammad, I., El-Sankary, K., El-Masry, E.: High-speed AES encryptor with efficient merging techniques. IEEE Embed. Syst. Lett. 2, 67–71 (2010)CrossRef
    11.Hodjat, A., Verbauwhede, I.: Area-throughput trade-offs for fully pipelined 30 to 70 Gbits/s AES processors. IEEE Trans. Comput. 50(4), 366–372 (2006)CrossRef
    12.Jeon, Y., Kim, Y., Lee, D.: A compact memory-free architecture for the AES algorithm using resource sharing methods. J. Circ. Syst. Comput. 19(5), 1109–1130 (2010)CrossRef
    13.Lin, S.Y., Huang, C.T.: A high-throughput low-power AES cipher for network applications. In: The 12th Asia and South Pacific Design Automation Conference (ASP-DAC 2007), pp. 595–600. IEEE (2007)
    14.Liu, P.C., Chang, H.C., Lee, C.Y.: A 1.69 Gb/s area-efficient AES crypto core with compact on-the-fly key expansion unit. In: 41st European Solid-State Circuits Conference (ESSCIRC 2009), pp. 404–407. IEEE (2009)
    15.Lutz, A., Treichler, J., Gürkaynak, F., Kaeslin, H., Basler, G., Erni, A., Reichmuth, S., Rommens, P., Oetiker, P., Fichtner, W.: 2Gbit/s hardware realizations of RIJNDAEL and SERPENT: a comparative analysis. In: Kaliski, B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 144–158. Springer, Heidelberg (2002)
    16.Mathew, S., Satpathy, S., Suresh, V., Anders, M., Himanshu, K., Amit, A., Hsu, S., Chen, G., Krishnamurthy, R.K.: 340 mV-1.1V, 289 Gbps/W, 2090-gate nanoAES hardware accelerator with area-optimized encrypt/decrypt \(GF(2^4)^2\) polynomials in 22 nm tri-gate CMOS. IEEE J. Solid-State Circ. 50, 1048–1058 (2015)CrossRef
    17.Mathew, S.K., Sheikh, F., Kounavis, M.E., Gueron, S., Agarwal, A., Hsu, S.K., Himanshu, K., Anders, M.A., Krishnamurthy, R.K.: 53 Gbps native \(GF(2^4)^2\) composite-field AES-encrypt/decrypt accelerator for content-protection in 45 nm high-performance microprocessors. IEEE J. Solid-State Circ. 46, 767–776 (2011)CrossRef
    18.Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)CrossRef
    19.Morioka, S., Satoh, A.: An optimized S-Box circuit architecture for low power AES design. In: Kaliski, B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 172–186. Springer, Heidelberg (2002)
    20.Morioka, S., Satoh, A.: A 10 Gbps full-AES crypto design with a twisted-BDD S-box architecture. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12, 686–691 (2004)CrossRef
    21.Nekado, K., Nogami, Y., Iokibe, K.: Very short critical path implementation of AES with direct logic gates. In: Hanaoka, G., Yamauchi, T. (eds.) IWSEC 2012. LNCS, vol. 7631, pp. 51–68. Springer, Heidelberg (2012)CrossRef
    22.Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear functions in the presence of glithces. J. Cryptology 24, 292–321 (2011)MathSciNet CrossRef MATH
    23.Nogami, Y., Nekado, K., Toyota, T., Hongo, N., Morikawa, Y.: Mixed bases for efficient inversion in \({{\mathbb{F}}_{((2^2)^2)^2}}\) and conversion matrices of SubBytes of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 234–247. Springer, Heidelberg (2010)CrossRef
    24.Okamoto, K., Homma, N., Aoki, T., Morioka, S.: A hierarchical formal approach to verifying side-channel resistant cryptographic processors. In: Hardware-Oriented Security and Trust (HOST), pp. 76–79. IEEE (2014)
    25.Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A side-channel analysis resistant description of the AES S-Box. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)CrossRef
    26.Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (2015)CrossRef
    27.Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J.R., Rohatgi, P.: Efficient Rijndael encryption implementation with composite field arithmetic. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 171–184. Springer, Heidelberg (2001)CrossRef
    28.Sasao, T.: AND-EXOR expressions and their optimization. In: Sasao, T. (ed.) Logic Synthesis and Optimization. The Kluwer International Series in Engineering and Computer Science, vol. 212, pp. 287–312. Kluwer Academic Publishers (1993)
    29.Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware architecture with S-Box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)CrossRef
    30.Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA resistant ASIC or FPGA implementation. In: Design, Automation and Test in Europe Conference and Exhibition (DATE), vol. 1, pp. 246–251 (2004)
    31.Ueno, R., Homma, N., Sugawara, Y., Nogami, Y., Aoki, T.: Highly efficient \(GF(2^8)\) inversion circuit based on redundant GF arithmetic and its application to AES design. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 63–80. Springer, Heidelberg (2015)CrossRef
    32.Verbauwhede, I., Schaumont, P., Kuo, H.: Design and performance testing of a 2.29-GB/s Rijndael processor. IEEE J. Solid-State Circ. 38, 569–572 (2003)CrossRef
  • 作者单位:Rei Ueno (15)
    Sumio Morioka (16)
    Naofumi Homma (15)
    Takafumi Aoki (15)

    15. Tohoku University, Aramaki Aza Aoba 6–6–05, Aoba-ku, Sendai-shi, 980-8579, Japan
    16. Central Research Laboratories, NEC Corporation, Athene, Odyssey Business Park, West End Road, South Ruislip, Middlesex, HA4 6QE, UK
  • 丛书名:Cryptographic Hardware and Embedded Systems ¨C CHES 2016
  • ISBN:978-3-662-53140-2
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
  • 卷排序:9813
文摘
This paper proposes a highly efficient AES hardware architecture that supports both encryption and decryption for the CBC mode. Some conventional AES architectures employ pipelining techniques to enhance the throughput and efficiency. However, such pipelined architectures are frequently unfit because many practical cryptographic applications work in the CBC mode, where block-wise parallelism is not available for encryption. In this paper, we present an efficient AES encryption/decryption hardware design suitable for such block-chaining modes. In particular, new operation-reordering and register-retiming techniques allow us to unify the inversion circuits for encryption and decryption (i.e., SubBytes and InvSubBytes) without any delay overhead. A new unification technique for linear mappings further reduces both the area and critical delay in total. Our design employs a common loop architecture and can therefore efficiently perform even in the CBC mode. We also present a shared key scheduling datapath that can work on-the-fly in the proposed architecture. To the best of our knowledge, the proposed architecture has the shortest critical path delay and is the most efficient in terms of throughput per area among conventional AES encryption/decryption architectures with tower-field S-boxes. We evaluate the performance of the proposed and some conventional datapaths by logic synthesis results with the TSMC 65-nm standard-cell library and NanGate 45- and 15-nm open-cell libraries. As a result, we confirm that our proposed architecture achieves approximately 53–72 % higher efficiency (i.e., a higher bps/GE) than any other conventional counterpart.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700