用户名: 密码: 验证码:
Large Scale Lattice Boltzmann Simulation for the Coupling of Free and Porous Media Flow
详细信息    查看全文
  • 关键词:Lattice Boltzmann method ; Pore ; scale simulation ; Two domain approach ; Darcy Navier ; Stokes coupling ; Interface conditions
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:9611
  • 期:1
  • 页码:1-18
  • 全文大小:1,456 KB
  • 参考文献:1.Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Springer, Heidelberg (2011)
    2.Alazmi, B., Vafai, K.: Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transf. 44, 1735–1749 (2001)CrossRef MATH
    3.Nield, D., Kuznetsov, A.: The effect of a transition layer between a fluid and a porous medium: shear flow in a channel. Transp. Porous Media 78, 477–487 (2009)CrossRef
    4.Le Bars, M., Worster, M.G.: Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification. J. Fluid Mech. 550, 149–173 (2006)MathSciNet CrossRef MATH
    5.Goyeau, B., Lhuillier, D., Gobin, D., et al.: Momentum transport at a fluid-porous interface. Int. J. Heat Mass Transf. 46, 4071–4081 (2003)CrossRef MATH
    6.Chandesris, M., Jamet, D.: Jump conditions and surface-excess quantities at a fluid/porous interface: a multi-scale approach. Transp. Porous Media 78, 419–438 (2009)MathSciNet CrossRef
    7.Goharzadeh, A., Khalili, A., Jørgensen, B.B.: Transition layer thickness at a fluid-porous interface. Phys. Fluids 17, 057102 (2005)CrossRef MATH
    8.Ghisalberti, M.: The three-dimensionality of obstructed shear flows. Environ. Fluid Mech. 10, 329–343 (2010)CrossRef
    9.Morad, M., Khalili, A.: Transition layer thickness in a fluid-porous medium of multi-sized spherical beads. Exp. Fluids 46, 323–330 (2009)CrossRef
    10.Pokrajac, D., Manes, C.: Velocity measurements of a free-surface turbulent flow penetrating a porous medium composed of uniform-size spheres. Transp. Porous Media 78, 367–383 (2009)CrossRef
    11.Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)CrossRef
    12.Nield, D., Bejan, A.: Convection in Porous Media. Springer, New York (2006)MATH
    13.Duman, T., Shavit, U.: An apparent interface location as a tool to solve the porous interface flow problem. Transp. Porous Media 78, 509–524 (2009)CrossRef
    14.Baber, K., Mosthaf, K., Flemisch, B., Helmig, R., Müthing, S., Wohlmuth, B.: Numerical scheme for coupling two-phase compositional porous-media flow and one-phase compositional free flow. IMA J. Appl. Math. 6, 887–909 (2012)MathSciNet CrossRef MATH
    15.Mosthaf, K., Baber, K., Flemisch, B., Helmig, R., Leijnse, A., Rybak, I., Wohlmuth, B.: A new coupling concept for two-phase compositional porous media and single-phase compositional free flow. Water Resour. Res. 47, 1–19 (2011)CrossRef
    16.Saffman, P.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50, 93–101 (1971)CrossRef MATH
    17.Ochoa-Tapia, J., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid – II. Comparison with experiment. Int. J. Heat Mass Transf. 38, 2647–2655 (1995)CrossRef MATH
    18.Martys, N., Bentz, D.P., Garboczi, E.J.: Computer simulation study of the effective viscosity in Brinkman’s equation. Phys. Fluids 6, 1434–1439 (1994)CrossRef MATH
    19.Lundgren, T.S.: Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech. 51, 273–299 (1972)CrossRef MATH
    20.Zhang, Q., Prosperetti, A.: Pressure-driven flow in a two-dimensional channel with porous walls. J. Fluid Mech. 631, 1–21 (2009)MathSciNet CrossRef MATH
    21.Nabovati, A., Amon, C.: Hydrodynamic boundary condition at open-porous interface: a pore-level lattice Boltzmann study. Transp. Porous Media 96, 83–95 (2013)CrossRef
    22.Liu, Q., Prosperetti, A.: Pressure-driven flow in a channel with porous walls. J. Fluid Mech. 679, 77–100 (2011)CrossRef MATH
    23.Preclik, T., Rüde, U.: Ultrascale simulations of non-smooth granular dynamics. Comput. Part. Mech. 1–24 (2015)
    24.Feichtinger, C., Götz, J., Donath, S., Iglberger, K., Rüde, U.: Walberla: exploiting massively parallel systems for lattice Boltzmann simulations. In: Trobec, R., Vajteršic, M., Zinterhof, P. (eds.) Parallel Computing, pp. 241–260. Springer, London (2009)CrossRef
    25.Rong, L.W., Dong, K.J., Yu, A.B.: Lattice-Boltzmann simulation of fluid flow through packed beds of spheres: effect of particle size distribution. Chem. Eng. Sci. 116, 508–523 (2014)CrossRef
    26.Beetstra, R., van der Hoef, M.A., Kuipers, J.A.M.: TA Lattice-Boltzmann simulation study of the drag coefficient of clusters of spheres. Comput. Fluids 35, 966–970 (2006)CrossRef MATH
    27.Succi, S., Foti, E., Higuera, F.: Three-dimensional flows in complex geometries with the lattice Boltzmann method. EPL (Europhys. Lett.) 10, 433 (1989)CrossRef
    28.Singh, M., Mohanty, K.: Permeability of spatially correlated porous media. Chem. Eng. Sci. 55, 5393–5403 (2000)CrossRef
    29.Bernsdorf, J., Brenner, G., Durst, F.: Numerical analysis of the pressure drop in porous media flow with lattice Boltzmann (BGK) automata. Comput. Phys. Commun. 129, 247–255 (2000)MathSciNet CrossRef MATH
    30.Kim, J., Lee, J., Lee, K.C.: Nonlinear correction to Darcy’s law for a flow through periodic arrays of elliptic cylinders. Physica A: Stat. Mech. Appl. 293, 13–20 (2001)CrossRef MATH
    31.Spaid, M.A.A., Phelan, F.R.: Lattice Boltzmann methods for modeling microscale flow in fibrous porous media. Phys. Fluids 9, 2468–2474 (1997)MathSciNet CrossRef MATH
    32.Freed, D.M.: Lattice-Boltzmann method for macroscopic porous media modeling. Int. J. Mod. Phys. C 09, 1491–1503 (1998)CrossRef
    33.Martys, N.S.: Improved approximation of the Brinkman equation using a lattice Boltzmann method. Phys. Fluids 13, 1807–1810 (2001)CrossRef MATH
    34.Nithiarasu, P., Seetharamu, K., Sundararajan, T.: Natural convective heat transfer in a fluid saturated variable porosity medium. Int. J. Heat Mass Transf. 40, 3955–3967 (1997)CrossRef MATH
    35.Guo, Z., Zhao, T.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66, 036304 (2002)CrossRef
    36.Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)CrossRef MATH
    37.Pan, C., Luo, L.S., Miller, C.T.: An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput. Fluids 35, 898–909 (2006)CrossRef MATH
    38.Bogner, S., Mohanty, S., Rüde, U.: Drag correlation for dilute and moderately dense fluid-particle systems using the lattice Boltzmann method. Int. J. Multiph. Flow 68, 71–79 (2015)MathSciNet CrossRef
    39.Ginzburg, I.: Lattice Boltzmann modeling with discontinuous collision components: hydrodynamic and advection-diffusion equations. J. Stat. Phys. 126, 157–206 (2007)MathSciNet CrossRef MATH
    40.Ginzburg, I., Verhaeghe, F., d’Humieres, D.: Two-relaxation-time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions. Commun. Comput. Phys. 3, 427–478 (2008)MathSciNet
    41.Ginzburg, I., Verhaeghe, F., d’Humières, D.: Study of simple hydrodynamic solutions with the two-relaxation-times lattice-Boltzmann scheme. Commun. Comput. Phys. 3, 519–581 (2008)MathSciNet
    42.He, X., Luo, L.S.: Lattice Boltzmann model for the incompressible Navier-Stokes equation. J. Stat. Phys. 88, 927–944 (1997)MathSciNet CrossRef MATH
    43.Khirevich, S., Ginzburg, I., Tallarek, U.: Coarse- and fine-grid numerical behavior of MRT/TRT lattice Boltzmann schemes in regular and random sphere packings. J. Comput. Phys. 281, 708–742 (2015)MathSciNet CrossRef
    44.Feichtinger, C., Donath, S., Köstler, H., Götz, J., Rüde, U.: WaLBerla: HPC software design for computational engineering simulations. J. Comput. Sci. 2, 105–112 (2011)CrossRef
    45.Godenschwager, C., Schornbaum, F., Bauer, M., Köstler, H., Rüde, U.: A framework for hybrid parallel flow simulations with a trillion cells in complex geometries. In: Proceedings of SC13: International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2013, NY, USA, pp. 35:1–35:12. ACM, New York (2013)
    46.Peters, A., Melchionna, S., Kaxiras, E., Lätt, J., Sircar, J., Bernaschi, M., Bison, M., Succi, S.: Multiscale simulation of cardiovascular flows on the IBM Bluegene/P: full heart-circulation system at red-blood cell resolution. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–10. IEEE Computer Society (2010)
    47.Schönherr, M., Kucher, K., Geier, M., Stiebler, M., Freudiger, S., Krafczyk, M.: Multi-thread implementations of the lattice Boltzmann method on non-uniform grids for CPUs and GPUs. Comput. Math. Appl. 61, 3730–3743 (2011)CrossRef
    48.Robertsen, F., Westerholm, J., Mattila, K.: Lattice Boltzmann simulations at petascale on multi-GPU systems with asynchronous data transfer and strictly enforced memory read alignment. In: 23rd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 604–609 (2015)
  • 作者单位:Ehsan Fattahi (18)
    Christian Waluga (18)
    Barbara Wohlmuth (18)
    Ulrich Rüde (18)

    18. Fakultät für Mathematik, Technische Universität München, Munich, Germany
  • 丛书名:High Performance Computing in Science and Engineering
  • ISBN:978-3-319-40361-8
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
  • 卷排序:9611
文摘
In this work, we investigate the interaction of free and porous media flow by large scale lattice Boltzmann simulations. We study the transport phenomena at the porous interface on multiple scales, i.e., we consider both, computationally generated pore-scale geometries and homogenized models at a macroscopic scale. The pore-scale results are compared to those obtained by using different transmission models. Two-domain approaches with sharp interface conditions, e.g., of Beavers–Joseph–Saffman type, as well as a single-domain approach with a porosity depending viscosity are taken into account. For the pore-scale simulations, we use a highly scalable scheme with a robust second order boundary handling. We comment on computational aspects of the pore-scale simulation and on how to generate pore-scale geometries. The two-domain approaches depend sensitively on the choice of the exact position of the interface, whereas a well-designed single-domain approach can lead to a significantly better recovery of the averaged pore-scale results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700