用户名: 密码: 验证码:
Optimized design and fabrication of a microfluidic platform to study single cells and multicellular aggregates in 3D
详细信息    查看全文
文摘
A microfluidic platform for cell motility analysis in a three-dimensional environment is presented. The microfluidic device is designed to study migration of both single cells and cell spheroids, in particular under spatially and temporally controlled chemical stimuli. A layout based on a central microchannel confined by micropillars and two lateral reservoirs was selected as the most effective. The microfluidics have an internal height of 350 μm to accommodate cell spheroids of a considerable size. The chip is fabricated using well-established micromachining techniques, by obtaining the polydimethylsiloxane replica from a Si/SU-8 master. The chip is then bonded on a 170-μm-thick microscope glass slide to allow high spatial resolution live microscopy. In order to allow the cost-effective and highly repeatable production of chips with high aspect ratio (5:1) micropillars, specific design and fabrication processes were optimized. This design permits spatial confinement of the gel where cells are grown, the creation of a stable gel–liquid interface and the formation of a diffusive gradient of a chemoattractant (>48 h). The chip accomplishes both the tasks of a microfluidic bioreactor system and a cell analysis platform avoiding critical handling of the sample. The experimental fluidic tests confirm the easy handling of the chip and in particular the effectiveness of the micropillars to separate the Matrigel™ from the culture media. Experimental tests of (i) the stability of the gradient, (ii) the biocompatibility and (iii) the suitability for microscopy are presented.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700