用户名: 密码: 验证码:
Influence of mill scale and rust layer on the corrosion resistance of low-alloy steel in simulated concrete pore solution
详细信息    查看全文
  • 作者:Jin-jie Shi ; Jing Ming
  • 关键词:steel reinforced concrete ; low alloy steel ; low carbon steel ; steel corrosion ; corrosion resistance
  • 刊名:International Journal of Minerals, Metallurgy, and Materials
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:24
  • 期:1
  • 页码:64-74
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Materials Science, general; Metallic Materials; Characterization and Evaluation of Materials; Ceramics, Glass, Composites, Natural Materials; Surfaces and Interfaces, Thin Films; Tribology, Corrosion
  • 出版者:University of Science and Technology Beijing
  • ISSN:1869-103X
  • 卷排序:24
文摘
Electrochemical impedance spectroscopy, cyclic potentiodynamic polarization measurements, and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy were used to investigate the influence of mill scale and rust layer on the passivation capability and chloride-induced corrosion behaviors of conventional low-carbon (LC) steel and low-alloy (LA) steel in simulated concrete pore solution. The results show that mill scale exerts different influences on the corrosion resistance of both steels at various electrochemical stages. We propose that the high long-term corrosion resistance of LA steel is mainly achieved through the synergistic effect of a gradually formed compact, adherent and well-distributed Cr-enriched inner rust layer and the physical barrier protection effect of mill scale.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700