用户名: 密码: 验证码:
Enhanced lithium storage performance of a self-assembled hierarchical porous Co3O4/VGCF hybrid high-capacity anode material for lithium-ion batteries
详细信息    查看全文
文摘
A Co3O4/vapor-grown carbon fiber (VGCF) hybrid material is prepared by a facile approach, namely, via liquid-phase carbonate precipitation followed by thermal decomposition of the precipitate at 380 °C for 2 h in argon gas flow. The material is characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller specific surface area analysis, and carbon elemental analysis. The Co3O4 in the hybrid material exhibits the morphology of porous submicron secondary particles which are self assembled from enormous cubic-phase crystalline Co3O4 nanograins. The electrochemical performance of the hybrid as a high-capacity conversion-type anode material for lithium-ion batteries is investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic discharge/charge methods. The hybrid material demonstrates high specific capacity, good rate capability, and good long-term cyclability, which are far superior to those of the pristine Co3O4 material prepared under similar conditions. For example, the reversible charge capacities of the hybrid can reach 1100–1150 mAh g−1 at a lower current density of 0.1 or 0.2 A g−1 and remain 600 mAh g−1 at the high current density of 5 A g−1. After 300 cycles at 0.5 A g−1, a high charge capacity of 850 mAh g−1 is retained. The enhanced electrochemical performance is attributed to the incorporated VGCFs as well as the porous structure and the smaller nanograins of the Co3O4 active material.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700