用户名: 密码: 验证码:
Mathematical Model for Predicting the Resistivity of an Electroconductive Woven Structure
详细信息    查看全文
  • 作者:Magdalena Tokarska
  • 关键词:Two ; component composite ; electroconductive woven fabric ; resistivity ; mathematical model
  • 刊名:Journal of Electronic Materials
  • 出版年:2017
  • 出版时间:March 2017
  • 年:2017
  • 卷:46
  • 期:3
  • 页码:1497-1503
  • 全文大小:713KB
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Optical and Electronic Materials; Characterization and Evaluation of Materials; Electronics and Microelectronics, Instrumentation; Solid State Physics;
  • 出版者:Springer US
  • ISSN:1543-186X
  • 卷排序:46
文摘
Highly conductive woven fabrics (WF) can be used as electronic components. Resistivity is an intrinsic physical property of the conductive textile materials (CTM). The McLachlan model that describes the resistivity of a two-component macroscopic composite (TCMC) subjected to a constant external electric field was proposed to predict the resistivity of fabrics. The volume fraction of voids in material, the voids dimension, and a single morphology parameter were taken into account. The resistivity of a chosen WF was determined based on the model. Verification of the received results was carried out. In the case of four samples, the verification was confirmed by the high level of prediction being in the range of 83–88%. In the case of one sample, the verification was negative (26%). This allowed one to pay attention to the influence of compactness and irregularity of the woven structure on results received using the model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700