用户名: 密码: 验证码:
Mechanical Deformation of Sintered Porous Ag Die Attach at High Temperature and Its Size Effect for Wide-Bandgap Power Device Design
详细信息    查看全文
文摘
The mechanical properties of sintered Ag paste with microporous structure have been investigated by tensile and shear tests, focusing on the temperature-dependent plastic deformation at various temperatures from 25°C to 300°C, corresponding to the target operating temperature range of emerging wide-bandgap semiconductor devices. Specimens were prepared by sintering hybrid Ag paste consisting of microflake and submicron spherical Ag particles, simulating a typical bonding process for power semiconductor die attach. Mechanical tests revealed that the unique microstructure caused a brittle-to-ductile transition at temperature of around 160°C, remarkably lower than that of bulk Ag. The obtained Young’s modulus and shear modulus values indicate obvious softening with increasing temperature, together with a remarkable decrease in Poisson’s ratio. These plastic behaviors at elevated temperature can be explained based on Coble creep in the microporous network structure. Fracture surfaces after tensile and shear tests indicated unique features on scanning electron microscopy, reflecting the variation in the ductile behavior with the test temperature. Furthermore, these temperature-dependent mechanical parameters were employed in three-dimensional finite-element analysis of the thermomechanical stress distribution in wide-bandgap semiconductor module structures including Ag paste die attach of different sizes. Detailed thermal stress analysis enabled precise evaluation of the packaging design for wide-bandgap semiconductor modules for use in high-temperature applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700