用户名: 密码: 验证码:
An exponentially local spectral flow for possibly non-self-adjoint perturbations of non-interacting quantum spins, inspired by KAM theory
详细信息    查看全文
文摘
Since its introduction by Hastings (Phys Rev B 69:104431, 2004), the technique of quasi-adiabatic continuation has become a central tool in the discussion and classification of ground-state phases. It connects the ground states of self-adjoint Hamiltonians in the same phase by a unitary quasi-local transformation. This paper takes a step towards extending this result to non-self-adjoint perturbations, though, for technical reason, we restrict ourselves here to weak perturbations of non-interacting spins. The extension to non-self-adjoint perturbation is important for potential applications to Glauber dynamics (and its quantum analogues). In contrast to the standard quasi-adiabatic transformation, the transformation constructed here is exponentially local. Our scheme is inspired by KAM theory, with frustration-free operators playing the role of integrable Hamiltonians.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700