用户名: 密码: 验证码:
Remote sensing Penman–Monteith model to estimate catchment evapotranspiration considering the vegetation diversity
详细信息    查看全文
  • 作者:Fawen Li ; Runxiang Cao ; Yong Zhao ; Dongjing Mu…
  • 刊名:Theoretical and Applied Climatology
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:127
  • 期:1-2
  • 页码:111-121
  • 全文大小:
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Atmospheric Sciences; Climatology; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution;
  • 出版者:Springer Vienna
  • ISSN:1434-4483
  • 卷排序:127
文摘
A new method for calculating evaporation is proposed, using the Penman–Monteith (P-M) model with remote sensing. This paper achieved the effective estimation to daily evapotranspiration in the Ziya river catchment by using the P-M model based on MODIS remote sensing leaf area index and respectively estimated plant transpiration and soil evaporation by using coefficient of soil evaporation. This model divided catchment into seven different sub-regions which are prairie, meadow, grass, shrub, broad-leaved forest, cultivated vegetation, and coniferous forest through thoroughly considering the vegetation diversity. Furthermore, optimizing and calibrating parameters based on each sub-region and analyzing spatio-temporal variation rules of the model main parameters which are coefficient of soil evaporation f and maximum stomatal conductance gsx. The results indicate that f and gsx calibrated by model are basically consistent with measured data and have obvious spatio-temporal distribution characteristics. The monthly average evapotranspiration value of simulation is 37.96 mm/mon which is close to the measured value with 33.66 mm/mon and the relative error of simulation results in each subregion are within 11 %, which illustrates that simulated values and measured values fit well and the precision of model is high. In addition, plant transpiration and soil evaporation account for about 84.64 and 15.36 % respectively in total evapotranspiration, which means the difference between values of them is large. What is more, this model can effectively estimate the green water resources in basin and provide effective technological support for water resources estimation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700