用户名: 密码: 验证码:
Experimental and numerical studies on the performance and surface streamlines on the blades of a horizontal-axis wind turbine
详细信息    查看全文
文摘
Investigating laminar separation over the turbine blade of a horizontal-axis wind turbine (HAWT) has been considered an important task to improve the aerodynamic performance of a wind turbine. To better understand the laminar separation phenomena, in this study, the aerodynamic forces of a SD8000 airfoil (representing the sectional blade shape) in the steady-state conditions were first predicted using an incompressible Reynolds-averaged Navier–Stokes solver with the γ–Reθt and k–kLω transition models. By comparing simulation and experimental results, the k–kLω transition model was chosen to simulate the laminar separation on three-dimensional (3D) turbine blade. Experimentally, a HAWT with three blades was then tested in a close-circuit wind tunnel between the tip speed ratios (TSRs) of 2 and 7 at the wind speed of 10 m/s. In addition, through computational fluid dynamics, the turbine performance and flow characteristics on the blade as blade is rotating were investigated. It is shown that 3D simulations agreed well with the experimental results with regard to the mechanical power of the HAWT at the testing TSRs. Moreover, the separation and reattachment lines on the suction surface of the turbine blade were also observed through the skin friction line, indicating that laminar separation moved toward the trailing edge with the increasing TSR at the blade tip region.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700