用户名: 密码: 验证码:
Microstructure and properties of surfacing layers of dies manufactured by bimetal-gradient-layer surfacing technology before and after service
详细信息    查看全文
文摘
The purpose of this article is to investigate the microstructure and mechanical properties of surfacing layers (wear layer and transition layer) of a hot forging die manufactured by the bimetal-gradient-layer surfacing method, which is based on ZG29MnMoNi cast steel before and after forged 5761 parts on a 63MN hot die forging press. The finite element model of a die was established. Subsequently, a simulation was conducted to analyze the temperature field of the die and its cycle features under working conditions. Microstructure and mechanical property were measured. Results indicated that the microstructure of the wear layer mainly consists of temper sorbite, ferrite and carbides. The transition layer before and after service is mainly composed of both temper sobrite, lower bainite, and a small amount of temper martensite. The mechanical properties of wear and transition layers declined significantly after service. The tensile strength, yield strength, reduction of area, and elongation of wear layer declined by 41.6, 32.5, 28.3, and 24.5 %, respectively. With those indexes the transition layer decreased by 36.6, 34, 24.4, and 19.8 %, respectively. Microhardness and impact energy of wear and transition layers have showed a decrease of 17, 6 % and 51.2, 32.6 %, respectively. The impact fracture mode of both wear and transition layers is typically intergranular fracture after service. As a conclusion, it was determined that the service process sufficiently influenced the mechanical properties of the surfacing layers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700