用户名: 密码: 验证码:
A novel MWCNT/nanotubular TiO2(B) loaded with SnO2 nanocrystals ternary composite as anode material for lithium-ion batteries
详细信息    查看全文
  • 作者:Jiao Zheng ; Daqian Ma ; Xiangfeng Wu ; Peng Dou ; Zhenzhen Cao…
  • 刊名:Journal of Materials Science
  • 出版年:2017
  • 出版时间:March 2017
  • 年:2017
  • 卷:52
  • 期:6
  • 页码:3016-3027
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics;
  • 出版者:Springer US
  • ISSN:1573-4803
  • 卷排序:52
文摘
A novel MWCNT/long nanotubular TiO2(B) loaded with SnO2 nanocrystals (SnO2NC/TiO2(B)NT/MWCNT) ternary composite has been prepared by two-step hydrothermal method and used as the anode material for the first time. In this work, the mechanical stirring improved the diffusion and surface reaction rates of reactants and promoted the appearance of longer intermediate TiO2(B) nanosheets, leading to the formation of TiO2(B) nanotubes with a length of ~9 μm. Among the SnO2NC/TiO2(B)NT/MWCNT composite, the wrapping and mechanical supporting functions of TiO2(B) nanotubes can effectively avoid the pulverization and aggregation of SnO2 nanocrystals (SnO2NC) in lithium-ion charging and discharging process. Moreover, the synergistic effects of nanotubular TiO2(B) coating layer and three-dimensional interconnected network structure composed of TiO2(B) nanotubes and MWCNT were taken to mitigate volume expansion of SnO2NC and improve the transport of lithium ion and electron in the network. Tested as anode materials, the SnO2NC/TiO2(B)NT/MWCNT composite maintained 211 mAh g−1 at 3000 mA g−1 after three testing processes with alternative current density of 200 and 3000 mA g−1 and could rebound to 338 mAh g−1 at a current density of 200 mA g−1, indicating an effective way to optimize electrochemical properties of SnO2 as anode material.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700