用户名: 密码: 验证码:
Earthquake magnitude prediction in Hindukush region using machine learning techniques
详细信息    查看全文
文摘
Earthquake magnitude prediction for Hindukush region has been carried out in this research using the temporal sequence of historic seismic activities in combination with the machine learning classifiers. Prediction has been made on the basis of mathematically calculated eight seismic indicators using the earthquake catalog of the region. These parameters are based on the well-known geophysical facts of Gutenberg–Richter’s inverse law, distribution of characteristic earthquake magnitudes and seismic quiescence. In this research, four machine learning techniques including pattern recognition neural network, recurrent neural network, random forest and linear programming boost ensemble classifier are separately applied to model relationships between calculated seismic parameters and future earthquake occurrences. The problem is formulated as a binary classification task and predictions are made for earthquakes of magnitude greater than or equal to 5.5 (\(M \ge\) 5.5), for the duration of 1 month. Furthermore, the analysis of earthquake prediction results is carried out for every machine learning classifier in terms of sensitivity, specificity, true and false predictive values. Accuracy is another performance measure considered for analyzing the results. Earthquake magnitude prediction for the Hindukush using these aforementioned techniques show significant and encouraging results, thus constituting a step forward toward the final robust prediction mechanism which is not available so far.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700