用户名: 密码: 验证码:
The Routh–Hurwitz conditions of fractional type in stability analysis of the Lorenz dynamical system
详细信息    查看全文
文摘
This paper discusses stability conditions and a chaotic behavior of the Lorenz dynamical system involving the Caputo fractional derivative of orders between 0 and 1. Contrary to some existing results on the topic, we study these problems with respect to a general (not specified) value of the Rayleigh number as a varying control parameter. Such a bifurcation analysis is known for the classical Lorenz system; we show that analysis of its fractional extension can yield different conclusions. In particular, we theoretically derive (and numerically illustrate) that nontrivial equilibria of the fractional Lorenz system become locally asymptotically stable for all values of the Rayleigh number large enough, which contradicts the behavior known from the classical case. As a main proof tool, we derive the optimal Routh–Hurwitz conditions of fractional type, i.e., necessary and sufficient conditions guaranteeing that all zeros of the corresponding characteristic polynomial are located inside the Matignon stability sector. Beside it, we perform other bifurcation investigations of the fractional Lorenz system, especially those documenting its transition from stability to chaotic behavior.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700