用户名: 密码: 验证码:
Resistance to Targeted Therapies in Renal Cancer: The Importance of Changing the Mechanism of Action
详细信息    查看全文
文摘
Renal cell carcinoma (RCC) is a complex disease characterized by mutations in several genes. Loss of function of the von Hippel-Lindau (VHL) tumour suppressor gene is a very common finding in RCC and leads to up-regulation of hypoxia-inducible factor (HIF)-responsive genes accountable for angiogenesis and cell growth, such as platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF). Binding of these proteins to their cognate tyrosine kinase receptors on endothelial cells promotes angiogenesis. Promotion of angiogenesis is in part due to the activation of the phosphatidylinositol-3-kinase (PI3K)/AKT/mechanistic target of rapamycin (mTOR) pathway. Inhibition of this pathway decreases protein translation and inhibits both angiogenesis and tumour cell proliferation. Although tyrosine kinase inhibitors (TKIs) stand as the main first-line treatment option for advanced RCC, eventually all patients will become resistant to TKIs. Resistance can be overcome by using second-line treatments with different mechanisms of action, such as inhibitors of mTOR, c-MET, programmed death 1 (PD-1) receptor, or the combination of an mTOR inhibitor (mTORi) with a TKI. In this article, we briefly review current evidence regarding mechanisms of resistance in RCC and treatment strategies to overcome resistance with a special focus on the PI3K/AKT/mTOR pathway.References1.Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29. doi:10.3322/caac.21254.PubMedCrossRefGoogle Scholar2.Bajorin DF. Tumors of the kidney, bladder, ureters, and renal pelvis. In: Goldman L, Schafer AI, editors. Goldman’s Cecil Medicine. 24th ed. Philadelphia, PA: Elsevier Saunders; 2012. p. 1303–8.CrossRefGoogle Scholar3.Gerlinger M, Catto JW, Orntoft TF, Real FX, Zwarthoff EC, Swanton C. Intratumour heterogeneity in urologic cancers: from molecular evidence to clinical implications. Eur Urol. 2015;67(4):729–37. doi:10.1016/j.eururo.2014.04.014.PubMedCrossRefGoogle Scholar4.Pantuck AJ, Zisman A, Belldegrun AS. The changing natural history of renal cell carcinoma. J Urol. 2001;166(5):1611–23. doi:10.1016/S0022-5347(05)65640-6.PubMedCrossRefGoogle Scholar5.Rohrmann K, Staehler M, Haseke N, Bachmann A, Stief CG, Siebels M. Immunotherapy in metastatic renal cell carcinoma. World J Urol. 2005;23(3):196–201. doi:10.1007/s00345-004-0470-4.PubMedCrossRefGoogle Scholar6.Linehan WM, Rubin JS, Bottaro DP. VHL loss of function and its impact on oncogenic signaling networks in clear cell renal cell carcinoma. Int J Biochem Cell Biol. 2009;41(4):753–6. doi:10.1016/j.biocel.2008.09.024.PubMedCrossRefGoogle Scholar7.Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358(19):2039–49. doi:10.1056/NEJMra0706596.PubMedPubMedCentralCrossRefGoogle Scholar8.Cohen HT, McGovern FJ. Renal-cell carcinoma. N Engl J Med. 2005;353(23):2477–90. doi:10.1056/NEJMra043172.PubMedCrossRefGoogle Scholar9.Voss MH, Hsieh JJ, Motzer RJ. Novel approaches targeting the vascular endothelial growth factor axis in renal cell carcinoma. Cancer J. 2013;19(4):299–306. doi:10.1097/PPO.0b013e31829d5cff.PubMedCrossRefGoogle Scholar10.Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov. 2006;5(8):671–88. doi:10.1038/nrd2062.PubMedCrossRefGoogle Scholar11.Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer. 2006;6(9):729–34. doi:10.1038/nrc1974.PubMedCrossRefGoogle Scholar12.Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–9. doi:10.1038/nature12222.CrossRefGoogle Scholar13.Hamid O, Carvajal RD. Anti-programmed death-1 and anti-programmed death-ligand 1 antibodies in cancer therapy. Expert Opin Biol Ther. 2013;13(6):847–61. doi:10.1517/14712598.2013.770836.PubMedCrossRefGoogle Scholar14.Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, Szczylik C, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet. 2007;370(9605):2103–11. doi:10.1016/S0140-6736(07)61904-7.PubMedCrossRefGoogle Scholar15.Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med. 2015;373(19):1803–13. doi:10.1056/NEJMoa1510665.PubMedCrossRefGoogle Scholar16.Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356(2):125–34. doi:10.1056/NEJMoa060655.PubMedCrossRefGoogle Scholar17.Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24. doi:10.1056/NEJMoa065044.PubMedCrossRefGoogle Scholar18.Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol. 2010;28(6):1061–8. doi:10.1200/JCO.2009.23.9764.PubMedCrossRefGoogle Scholar19.Rini BI, Escudier B, Tomczak P, Kaprin A, Szczylik C, Hutson TE, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet. 2011;378(9807):1931–9. doi:10.1016/S0140-6736(11)61613-9.PubMedCrossRefGoogle Scholar20.Choueiri TK, Escudier B, Powles T, Mainwaring PN, Rini BI, Donskov F, et al. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1814–23. doi:10.1056/NEJMoa1510016.PubMedPubMedCentralCrossRefGoogle Scholar21.Eisen T, Joensuu H, Nathan PD, Harper PG, Wojtukiewicz MZ, Nicholson S, et al. Regorafenib for patients with previously untreated metastatic or unresectable renal-cell carcinoma: a single-group phase 2 trial. Lancet Oncol. 2012;13(10):1055–62. doi:10.1016/S1470-2045(12)70364-9.PubMedCrossRefGoogle Scholar22.Mulders P, Hawkins R, Nathan P, de Jong I, Osanto S, Porfiri E, et al. Cediranib monotherapy in patients with advanced renal cell carcinoma: results of a randomised phase II study. Eur J Cancer. 2012;48(4):527–37. doi:10.1016/j.ejca.2011.12.022.PubMedCrossRefGoogle Scholar23.Motzer RJ, Nosov D, Eisen T, Bondarenko I, Lesovoy V, Lipatov O, et al. Tivozanib versus sorafenib as initial targeted therapy for patients with metastatic renal cell carcinoma: results from a phase III trial. J Clin Oncol. 2013;31(30):3791–9. doi:10.1200/JCO.2012.47.4940.PubMedCrossRefGoogle Scholar24.Motzer RJ, Porta C, Vogelzang NJ, Sternberg CN, Szczylik C, Zolnierek J, et al. Dovitinib versus sorafenib for third-line targeted treatment of patients with metastatic renal cell carcinoma: an open-label, randomised phase 3 trial. Lancet Oncol. 2014;15(3):286–96. doi:10.1016/S1470-2045(14)70030-0.PubMedCrossRefGoogle Scholar25.Motzer RJ, Hutson TE, Glen H, Michaelson MD, Molina A, Eisen T, et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 2015;16(15):1473–82. doi:10.1016/S1470-2045(15)00290-9.PubMedCrossRefGoogle Scholar26.Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356(22):2271–81. doi:10.1056/NEJMoa066838.PubMedCrossRefGoogle Scholar27.Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Phase 3 trial of everolimus for metastatic renal cell carcinoma : final results and analysis of prognostic factors. Cancer. 2010;116(18):4256–65. doi:10.1002/cncr.25219.PubMedCrossRefGoogle Scholar28.National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: kidney cancer, version 1.2016. http://www.nccn.org/professionals/physician_gls/pdf/kidney.pdf. Accessed October 2015.29.European Medicines Agency. Product Information Temsirolimus (Torisel®, Pfizer). http://www.ema.europa.eu/docs/es_ES/document_library/EPAR_-_Product_Information/human/000799/WC500039912.pdf. Accessed October 2015.30.European Medicines Agency. Product Information Everolimus (Afinitor®, Novartis). http://www.ema.europa.eu/docs/es_ES/document_library/EPAR_-_Product_Information/human/001038/WC500022814.pdf. Accessed October 2015.31.Haddad AQ, Kapur P, Singla N, Raman JD, Then MT, Nuhn P, et al. Validation of mammalian target of rapamycin biomarker panel in patients with clear cell renal cell carcinoma. Cancer. 2015;121(1):43–50. doi:10.1002/cncr.28976.PubMedCrossRefGoogle Scholar32.Iyer G, Hanrahan AJ, Milowsky MI, Al-Ahmadie H, Scott SN, Janakiraman M, et al. Genome sequencing identifies a basis for everolimus sensitivity. Science. 2012;338(6104):221. doi:10.1126/science.1226344.PubMedPubMedCentralCrossRefGoogle Scholar33.Voss MH, Hakimi AA, Pham CG, Brannon AR, Chen YB, Cunha LF, et al. Tumor genetic analyses of patients with metastatic renal cell carcinoma and extended benefit from mTOR inhibitor therapy. Clin Cancer Res. 2014;20(7):1955–64. doi:10.1158/1078-0432.CCR-13-2345.PubMedPubMedCentralCrossRefGoogle Scholar34.Hsieh J, Chen D, Wang P, Chen Y, Redzematovic A, Marker M et al. Identification of efficacy biomarkers in a large metastatic renal cell carcinoma (mRCC) cohort through next generation sequencing (NGS): Results from RECORD-3. J Clin Oncol. 2015;33(Suppl 15):(Abstract 4509).35.Kim JY, Lee SH, Moon KC, Kwak C, Kim HH, Keam B, et al. The Impact of PBRM1 Expression as a Prognostic and Predictive Marker in Metastatic Renal Cell Carcinoma. J Urol. 2015;194(4):1112–9. doi:10.1016/j.juro.2015.04.114.PubMedCrossRefGoogle Scholar36.Brenner W, Farber G, Herget T, Lehr HA, Hengstler JG, Thuroff JW. Loss of tumor suppressor protein PTEN during renal carcinogenesis. Int J Cancer. 2002;99(1):53–7. doi:10.1002/ijc.10303.PubMedCrossRefGoogle Scholar37.Kim HL, Seligson D, Liu X, Janzen N, Bui MH, Yu H, et al. Using tumor markers to predict the survival of patients with metastatic renal cell carcinoma. J Urol. 2005;173(5):1496–501. doi:10.1097/01.ju.0000154351.37249.f0.PubMedCrossRefGoogle Scholar38.Shi Y, Gera J, Hu L, Hsu JH, Bookstein R, Li W, et al. Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res. 2002;62(17):5027–34.PubMedGoogle Scholar39.Cho D, Signoretti S, Dabora S, Regan M, Seeley A, Mariotti M, et al. Potential histologic and molecular predictors of response to temsirolimus in patients with advanced renal cell carcinoma. Clin Genitourin Cancer. 2007;5(6):379–85. doi:10.3816/CGC.2007.n.020.PubMedCrossRefGoogle Scholar40.Li S, Kong Y, Si L, Chi Z, Cui C, Sheng X, et al. Phosphorylation of mTOR and S6RP predicts the efficacy of everolimus in patients with metastatic renal cell carcinoma. BMC Cancer. 2014;14:376. doi:10.1186/1471-2407-14-376.PubMedPubMedCentralCrossRefGoogle Scholar41.Park K, Lee JL, Park I, Park S, Ahn Y, Ahn JH, et al. Comparative efficacy of vascular endothelial growth factor (VEGF) tyrosine kinase inhibitor (TKI) and mammalian target of rapamycin (mTOR) inhibitor as second-line therapy in patients with metastatic renal cell carcinoma after the failure of first-line VEGF TKI. Med Oncol. 2012;29(5):3291–7. doi:10.1007/s12032-012-0227-7.PubMedCrossRefGoogle Scholar42.Rini BI, Atkins MB. Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol. 2009;10(10):992–1000. doi:10.1016/S1470-2045(09)70240-2.PubMedCrossRefGoogle Scholar43.Gordan JD, Lal P, Dondeti VR, Letrero R, Parekh KN, Oquendo CE, et al. HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell. 2008;14(6):435–46. doi:10.1016/j.ccr.2008.10.016.PubMedPubMedCentralCrossRefGoogle Scholar44.Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8(8):592–603. doi:10.1038/nrc2442.PubMedPubMedCentralCrossRefGoogle Scholar45.Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, et al. Expansion of myeloid immune suppressor Gr + CD11b + cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell. 2004;6(4):409–21. doi:10.1016/j.ccr.2004.08.031.PubMedCrossRefGoogle Scholar46.Kren L, Valkovsky I, Dolezel J, Capak I, Pacik D, Poprach A, et al. HLA-G and HLA-E specific mRNAs connote opposite prognostic significance in renal cell carcinoma. Diagn Pathol. 2012;7:58. doi:10.1186/1746-1596-7-58.PubMedPubMedCentralCrossRefGoogle Scholar47.Gobe G, Rubin M, Williams G, Sawczuk I, Buttyan R. Apoptosis and expression of Bcl-2, Bcl-XL, and Bax in renal cell carcinomas. Cancer Invest. 2002;20(3):324–32.PubMedCrossRefGoogle Scholar48.Ramp U, Dejosez M, Mahotka C, Czarnotta B, Kalinski T, Wenzel M, et al. Deficient activation of CD95 (APO-1/Fas)-mediated apoptosis: a potential factor of multidrug resistance in human renal cell carcinoma. Br J Cancer. 2000;82(11):1851–9. doi:10.1054/bjoc.2000.1155.PubMedPubMedCentralCrossRefGoogle Scholar49.Adelaiye R, Ciamporcero E, Miles KM, Sotomayor P, Bard J, Tsompana M, et al. Sunitinib dose escalation overcomes transient resistance in clear cell renal cell carcinoma and is associated with epigenetic modifications. Mol Cancer Ther. 2015;14(2):513–22. doi:10.1158/1535-7163.MCT-14-0208.PubMedCrossRefGoogle Scholar50.Sarkadi B, Homolya L, Szakacs G, Varadi A. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev. 2006;86(4):1179–236. doi:10.1152/physrev.00037.2005.PubMedCrossRefGoogle Scholar51.Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2(1):48–58. doi:10.1038/nrc706.PubMedCrossRefGoogle Scholar52.Gotink KJ, Broxterman HJ, Labots M, de Haas RR, Dekker H, Honeywell RJ, et al. Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance. Clin Cancer Res. 2011;17(23):7337–46. doi:10.1158/1078-0432.CCR-11-1667.PubMedPubMedCentralCrossRefGoogle Scholar53.Bielecka ZF, Czarnecka AM, Solarek W, Kornakiewicz A, Szczylik C. Mechanisms of Acquired Resistance to Tyrosine Kinase Inhibitors in Clear - Cell Renal Cell Carcinoma (ccRCC). Curr Signal Transduct Ther. 2014;8(3):218–28. doi:10.2174/1574362409666140206223014.PubMedCrossRefGoogle Scholar54.Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005;8(4):299–309. doi:10.1016/j.ccr.2005.09.005.PubMedCrossRefGoogle Scholar55.Welti JC, Gourlaouen M, Powles T, Kudahetti SC, Wilson P, Berney DM, et al. Fibroblast growth factor 2 regulates endothelial cell sensitivity to sunitinib. Oncogene. 2011;30(10):1183–93. doi:10.1038/onc.2010.503.PubMedCrossRefGoogle Scholar56.Martin D, Galisteo R, Gutkind JS. CXCL8/IL8 stimulates vascular endothelial growth factor (VEGF) expression and the autocrine activation of VEGFR2 in endothelial cells by activating NFkappaB through the CBM (Carma3/Bcl10/Malt1) complex. J Biol Chem. 2009;284(10):6038–42. doi:10.1074/jbc.C800207200.PubMedPubMedCentralCrossRefGoogle Scholar57.Currie MJ, Gunningham SP, Turner K, Han C, Scott PA, Robinson BA, et al. Expression of the angiopoietins and their receptor Tie2 in human renal clear cell carcinomas; regulation by the von Hippel-Lindau gene and hypoxia. J Pathol. 2002;198(4):502–10. doi:10.1002/path.1228.PubMedCrossRefGoogle Scholar58.Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997;277(5322):55–60. doi:10.1126/science.277.5322.55.PubMedCrossRefGoogle Scholar59.Loges S, Schmidt T, Carmeliet P. "Antimyeloangiogenic" therapy for cancer by inhibiting PlGF. Clin Cancer Res. 2009;15(11):3648–53. doi:10.1158/1078-0432.CCR-08-2276.PubMedCrossRefGoogle Scholar60.Kim KJ, Cho CS, Kim WU. Role of placenta growth factor in cancer and inflammation. Exp Mol Med. 2012;44(1):10–9. doi:10.3858/emm.2012.44.1.023.PubMedPubMedCentralCrossRefGoogle Scholar61.Patel NS, Li JL, Generali D, Poulsom R, Cranston DW, Harris AL. Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res. 2005;65(19):8690–7. doi:10.1158/0008-5472.CAN-05-1208.PubMedCrossRefGoogle Scholar62.Huang QB, Ma X, Li HZ, Ai Q, Liu SW, Zhang Y, et al. Endothelial Delta-like 4 (DLL4) promotes renal cell carcinoma hematogenous metastasis. Oncotarget. 2014;5(10):3066–75. doi:10.18632/oncotarget.1827.PubMedPubMedCentralCrossRefGoogle Scholar63.Cuvillier O, Ader I, Bouquerel P, Brizuela L, Malavaud B, Mazerolles C, et al. Activation of sphingosine kinase-1 in cancer: implications for therapeutic targeting. Curr Mol Pharmacol. 2010;3(2):53–65. doi:10.2174/1874467211003020053.PubMedCrossRefGoogle Scholar64.Ader I, Brizuela L, Bouquerel P, Malavaud B, Cuvillier O. Sphingosine kinase 1: a new modulator of hypoxia inducible factor 1alpha during hypoxia in human cancer cells. Cancer Res. 2008;68(20):8635–42. doi:10.1158/0008-5472.CAN-08-0917.PubMedCrossRefGoogle Scholar65.Baldewijns MM, van Vlodrop IJ, Vermeulen PB, Soetekouw PM, van Engeland M, de Bruine AP. VHL and HIF signalling in renal cell carcinogenesis. J Pathol. 2010;221(2):125–38. doi:10.1002/path.2689.PubMedCrossRefGoogle Scholar66.Jones RG, Thompson CB. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 2009;23(5):537–48. doi:10.1101/gad.1756509.PubMedPubMedCentralCrossRefGoogle Scholar67.Edinger AL, Thompson CB. An activated mTOR mutant supports growth factor-independent, nutrient-dependent cell survival. Oncogene. 2004;23(33):5654–63. doi:10.1038/sj.onc.1207738.PubMedCrossRefGoogle Scholar68.Cho DC, Hutson TE, Samlowski W, Sportelli P, Somer B, Richards P, et al. Two phase 2 trials of the novel Akt inhibitor perifosine in patients with advanced renal cell carcinoma after progression on vascular endothelial growth factor-targeted therapy. Cancer. 2012;118(24):6055–62. doi:10.1002/cncr.27668.PubMedPubMedCentralCrossRefGoogle Scholar69.Pantuck AJ, Seligson DB, Klatte T, Yu H, Leppert JT, Moore L, et al. Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer. 2007;109(11):2257–67. doi:10.1002/cncr.22677.PubMedCrossRefGoogle Scholar70.Shojaei F, Ferrara N. Role of the microenvironment in tumor growth and in refractoriness/resistance to anti-angiogenic therapies. Drug Resist Updat. 2008;11(6):219–30. doi:10.1016/j.drup.2008.09.001.PubMedCrossRefGoogle Scholar71.Crawford Y, Kasman I, Yu L, Zhong C, Wu X, Modrusan Z, et al. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell. 2009;15(1):21–34. doi:10.1016/j.ccr.2008.12.004.PubMedCrossRefGoogle Scholar72.Reinmuth N, Liu W, Jung YD, Ahmad SA, Shaheen RM, Fan F, et al. Induction of VEGF in perivascular cells defines a potential paracrine mechanism for endothelial cell survival. FASEB J. 2001;15(7):1239–41. doi:10.1096/fj.00-0693fje.PubMedGoogle Scholar73.Xian X, Hakansson J, Stahlberg A, Lindblom P, Betsholtz C, Gerhardt H, et al. Pericytes limit tumor cell metastasis. J Clin Invest. 2006;116(3):642–51. doi:10.1172/JCI25705.PubMedPubMedCentralCrossRefGoogle Scholar74.Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 2007;450(7171):825–31. doi:10.1038/nature06348.PubMedCrossRefGoogle Scholar75.Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009;15(3):220–31. doi:10.1016/j.ccr.2009.01.027.PubMedPubMedCentralCrossRefGoogle Scholar76.Koochekpour S, Jeffers M, Wang PH, Gong C, Taylor GA, Roessler LM, et al. The von Hippel-Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells. Mol Cell Biol. 1999;19(9):5902–12. doi:10.1128/MCB.19.9.5902.PubMedPubMedCentralCrossRefGoogle Scholar77.Shojaei F, Lee JH, Simmons BH, Wong A, Esparza CO, Plumlee PA, et al. HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res. 2010;70(24):10090–100. doi:10.1158/0008-5472.CAN-10-0489.PubMedCrossRefGoogle Scholar78.Lu KV, Chang JP, Parachoniak CA, Pandika MM, Aghi MK, Meyronet D, et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell. 2012;22(1):21–35. doi:10.1016/j.ccr.2012.05.037.PubMedPubMedCentralCrossRefGoogle Scholar79.Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, et al. Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J Cell Physiol. 2007;213(2):374–83. doi:10.1002/jcp.21223.PubMedCrossRefGoogle Scholar80.Arao T, Matsumoto K, Furuta K, Kudo K, Kaneda H, Nagai T, et al. Acquired drug resistance to vascular endothelial growth factor receptor 2 tyrosine kinase inhibitor in human vascular endothelial cells. Anticancer Res. 2011;31(9):2787–96.PubMedGoogle Scholar81.Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64. doi:10.1126/science.1203543.PubMedCrossRefGoogle Scholar82.Behnsawy HM, Shigemura K, Meligy FY, Yamamichi F, Yamashita M, Haung WC, et al. Possible role of sonic hedgehog and epithelial-mesenchymal transition in renal cell cancer progression. Korean J Urol. 2013;54(8):547–54. doi:10.4111/kju.2013.54.8.547.PubMedPubMedCentralCrossRefGoogle Scholar83.Grunwald V, Weikert S, Seidel C, Busch J, Johannsen A, Fenner M, et al. Efficacy of sunitinib re-exposure after failure of an mTOR inhibitor in patients with metastatic RCC. Onkologie. 2011;34(6):310–4. doi:10.1159/000328575.PubMedCrossRefGoogle Scholar84.van der Veldt AA, Eechoute K, Gelderblom H, Gietema J, Guchelaar HJ, van Erp NP, et al. Genetic polymorphisms associated with a prolonged progression-free survival in patients with metastatic renal cell cancer treated with sunitinib. Clin Cancer Res. 2011;17(3):620–9. doi:10.1158/1078-0432.CCR-10-1828.PubMedCrossRefGoogle Scholar85.Beuselinck B, Karadimou A, Lambrechts D, Claes B, Wolter P, Couchy G, et al. Single-nucleotide polymorphisms associated with outcome in metastatic renal cell carcinoma treated with sunitinib. Br J Cancer. 2013;108(4):887–900. doi:10.1038/bjc.2012.548.PubMedPubMedCentralCrossRefGoogle Scholar86.Garcia-Donas J, Esteban E, Leandro-Garcia LJ, Castellano DE, del Alba AG, Climent MA, et al. Single nucleotide polymorphism associations with response and toxic effects in patients with advanced renal-cell carcinoma treated with first-line sunitinib: a multicentre, observational, prospective study. Lancet Oncol. 2011;12(12):1143–50. doi:10.1016/S1470-2045(11)70266-2.PubMedCrossRefGoogle Scholar87.Prior C, Perez-Gracia JL, Garcia-Donas J, Rodriguez-Antona C, Guruceaga E, Esteban E, et al. Identification of tissue microRNAs predictive of sunitinib activity in patients with metastatic renal cell carcinoma. PLoS One. 2014;9(1):e86263. doi:10.1371/journal.pone.0086263.PubMedPubMedCentralCrossRefGoogle Scholar88.Rini BI, Wilding G, Hudes G, Stadler WM, Kim S, Tarazi J, et al. Phase II study of axitinib in sorafenib-refractory metastatic renal cell carcinoma. J Clin Oncol. 2009;27(27):4462–8. doi:10.1200/JCO.2008.21.7034.PubMedCrossRefGoogle Scholar89.Heng DY, Mackenzie MJ, Vaishampayan UN, Bjarnason GA, Knox JJ, Tan MH, et al. Primary anti-vascular endothelial growth factor (VEGF)-refractory metastatic renal cell carcinoma: clinical characteristics, risk factors, and subsequent therapy. Ann Oncol. 2012;23(6):1549–55. doi:10.1093/annonc/mdr533.PubMedCrossRefGoogle Scholar90.Bridgeman VL, Wan E, Foo S, Nathan MR, Welti JC, Frentzas S, et al. Preclinical Evidence That Trametinib Enhances the Response to Antiangiogenic Tyrosine Kinase Inhibitors in Renal Cell Carcinoma. Mol Cancer Ther. 2016;15(1):172–83. doi:10.1158/1535-7163.MCT-15-0170.PubMedCrossRefGoogle Scholar91.Broekman F, Giovannetti E, Peters GJ. Tyrosine kinase inhibitors: Multi-targeted or single-targeted? World J Clin Oncol. 2011;2(2):80–93. doi:10.5306/wjco.v2.i2.80.PubMedPubMedCentralCrossRefGoogle Scholar92.European Medicines Agency. Product Information Sunitinib (Sutent®, Pfizer). http://www.ema.europa.eu/docs/es_ES/document_library/EPAR_-_Product_Information/human/000687/WC500057737.pdf. Accessed October 2015.93.European Medicines Agency. Product Information Sorafenib (Nexavar®, Bayer). http://www.ema.europa.eu/docs/es_ES/document_library/EPAR_-_Product_Information/human/000690/WC500027704.pdf. Accessed October 2015.94.Sablin MP, Negrier S, Ravaud A, Oudard S, Balleyguier C, Gautier J, et al. Sequential sorafenib and sunitinib for renal cell carcinoma. J Urol. 2009;182(1):29–34. doi:10.1016/j.juro.2009.02.119. discussion.PubMedCrossRefGoogle Scholar95.Dudek AZ, Zolnierek J, Dham A, Lindgren BR, Szczylik C. Sequential therapy with sorafenib and sunitinib in renal cell carcinoma. Cancer. 2009;115(1):61–7. doi:10.1002/cncr.24009.PubMedCrossRefGoogle Scholar96.Di Lorenzo G, Carteni G, Autorino R, Bruni G, Tudini M, Rizzo M, et al. Phase II study of sorafenib in patients with sunitinib-refractory metastatic renal cell cancer. J Clin Oncol. 2009;27(27):4469–74. doi:10.1200/JCO.2009.22.6480.PubMedCrossRefGoogle Scholar97.Garcia JA, Hutson TE, Elson P, Cowey CL, Gilligan T, Nemec C, et al. Sorafenib in patients with metastatic renal cell carcinoma refractory to either sunitinib or bevacizumab. Cancer. 2010;116(23):5383–90. doi:10.1002/cncr.25327.PubMedCrossRefGoogle Scholar98.Iacovelli R, Santoni M, Verzoni E, Grassi P, Testa I, de Braud F, et al. Everolimus and temsirolimus are not the same second-line in metastatic renal cell carcinoma. A systematic review and meta-analysis of literature data. Clin Genitourin Cancer. 2015;13(2):137–41. doi:10.1016/j.clgc.2014.07.006.PubMedCrossRefGoogle Scholar99.Calvo E, Escudier B, Motzer RJ, Oudard S, Hutson TE, Porta C, et al. Everolimus in metastatic renal cell carcinoma: Subgroup analysis of patients with 1 or 2 previous vascular endothelial growth factor receptor-tyrosine kinase inhibitor therapies enrolled in the phase III RECORD-1 study. Eur J Cancer. 2012;48(3):333–9. doi:10.1016/j.ejca.2011.11.027.PubMedCrossRefGoogle Scholar100.Grunwald V, Karakiewicz PI, Bavbek SE, Miller K, Machiels JP, Lee SH, et al. An international expanded-access programme of everolimus: addressing safety and efficacy in patients with metastatic renal cell carcinoma who progress after initial vascular endothelial growth factor receptor-tyrosine kinase inhibitor therapy. Eur J Cancer. 2012;48(3):324–32. doi:10.1016/j.ejca.2011.06.054.PubMedCrossRefGoogle Scholar101.Motzer RJ, Barrios CH, Kim TM, Falcon S, Cosgriff T, Harker WG, et al. Phase II randomized trial comparing sequential first-line everolimus and second-line sunitinib versus first-line sunitinib and second-line everolimus in patients with metastatic renal cell carcinoma. J Clin Oncol. 2014;32(25):2765–72. doi:10.1200/JCO.2013.54.6911.PubMedCrossRefGoogle Scholar102.Motzer R, Alyasova A, Ye D, Karpenko A, Li H, Alekseev B et al. RECORD-4: A multicenter, phase II trial of second-line everolimus (EVE) in patients (pts) with metastatic renal cell carcinoma (mRCC). J Clin Oncol. 2015;33(Suppl):(Abstract 4518).103.Koutsoukos K, Espinosa Montano M, Kontovinis L, Tzannis K, Koutras A, Christodoulou C et al. Everolimus as second-line treatment in metastatic renal cell carcinoma (mRCC) after first-line pazopanib (The RESCUE study): A retrospective analysis by the Hellenic GU Cancer Group (HGUCG) with international collaboration. J Clin Oncol. 2015;33(Suppl):(Abstract e15601).104.Hutson TE, Escudier B, Esteban E, Bjarnason GA, Lim HY, Pittman KB, et al. Randomized phase III trial of temsirolimus versus sorafenib as second-line therapy after sunitinib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2014;32(8):760–7. doi:10.1200/JCO.2013.50.3961.PubMedCrossRefGoogle Scholar105.Snegovoy A, Varlamov S, Safina S, Varlamov I, Gurina L, Manzyuk LV et al. Everolimus in patients with metastatic renal cell carcinoma (RCC) previously treated with bevacizumab: Final results of prospective multicenter study. J Clin Oncol. 2015;33(Suppl):(Abstract e15621).106.Signorovitch J, Pal SK, Reichmann WN, Liu Z, Pérez JR, Vogelzang NJ et al. Comparative effectiveness of everolimus (EVE) and axitinib (AXI) for 2nd targeted therapy (TT) of metastatic renal cell carcinoma (mRCC) in the US: A retrospective chart review. J Clin Oncol. 2015;33(Suppl):(Abstract e15612).107.Exelixis Announces Positive Overall Survival Results from METEOR, the Phase 3 Pivotal Trial of Cabozantinib in Advanced Renal Cell Carcinoma. http://ir.exelixis.com/phoenix.zhtml?c=120923&p=irol-newsArticle_print&ID=2133957. Accessed May 2016.108.Negrier S, Gravis G, Perol D, Chevreau C, Delva R, Bay JO, et al. Temsirolimus and bevacizumab, or sunitinib, or interferon alfa and bevacizumab for patients with advanced renal cell carcinoma (TORAVA): a randomised phase 2 trial. Lancet Oncol. 2011;12(7):673–80. doi:10.1016/S1470-2045(11)70124-3.PubMedCrossRefGoogle Scholar109.Rini BI, Bellmunt J, Clancy J, Wang K, Niethammer AG, Hariharan S, et al. Randomized phase III trial of temsirolimus and bevacizumab versus interferon alfa and bevacizumab in metastatic renal cell carcinoma: INTORACT trial. J Clin Oncol. 2014;32(8):752–9. doi:10.1200/JCO.2013.50.5305.PubMedCrossRefGoogle Scholar110.Flaherty KT, Manola JB, Pins M, McDermott DF, Atkins MB, Dutcher JJ, et al. BEST: A Randomized Phase II Study of Vascular Endothelial Growth Factor, RAF Kinase, and Mammalian Target of Rapamycin Combination Targeted Therapy With Bevacizumab, Sorafenib, and Temsirolimus in Advanced Renal Cell Carcinoma--A Trial of the ECOG-ACRIN Cancer Research Group (E2804). J Clin Oncol. 2015;33(21):2384–91. doi:10.1200/JCO.2015.60.9727.PubMedPubMedCentralCrossRefGoogle Scholar111.Ravaud A, Barrios CH, Alekseev B, Tay MH, Agarwala SS, Yalcin S, et al. RECORD-2: phase II randomized study of everolimus and bevacizumab versus interferon alpha-2a and bevacizumab as first-line therapy in patients with metastatic renal cell carcinoma. Ann Oncol. 2015;26(7):1378–84. doi:10.1093/annonc/mdv170.PubMedGoogle Scholar112.Hainsworth JD, Spigel DR, Burris 3rd HA, Waterhouse D, Clark BL, Phase WR, et al. trial of bevacizumab and everolimus in patients with advanced renal cell carcinoma. J Clin Oncol. 2010;28(13):2131–6. doi:10.1200/JCO.2009.26.3152.PubMedCrossRefGoogle Scholar113.Medioni J, Banu E, Helley D, Scotte F, Fournier L, Mejean A, et al. Salvage therapy with bevacizumab-sunitinib combination after failure of sunitinib alone for metastatic renal cell carcinoma: a case series. Eur Urol. 2009;56(1):207–11. doi:10.1016/j.eururo.2009.01.001.PubMedCrossRefGoogle Scholar114.Rasmussen N, Rathmell WK. Looking beyond inhibition of VEGF/mTOR: emerging targets for renal cell carcinoma drug development. Curr Clin Pharmacol. 2011;6(3):199–206. doi:10.2174/157488411797189389.PubMedCrossRefGoogle Scholar115.Milella M, Felici A. Biology of metastatic renal cell carcinoma. J Cancer. 2011;2:369–73. doi:10.7150/jca.2.369.PubMedPubMedCentralCrossRefGoogle Scholar116.Lorenz MC, Heitman J. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J Biol Chem. 1995;270(46):27531–7. doi:10.1074/jbc.270.46.27531.PubMedCrossRefGoogle Scholar117.Kucejova B, Pena-Llopis S, Yamasaki T, Sivanand S, Tran TA, Alexander S, et al. Interplay between pVHL and mTORC1 pathways in clear-cell renal cell carcinoma. Mol Cancer Res. 2011;9(9):1255–65. doi:10.1158/1541-7786.MCR-11-0302.PubMedPubMedCentralCrossRefGoogle Scholar118.Harada K, Miyake H, Kumano M, Fujisawa M. Acquired resistance to temsirolimus in human renal cell carcinoma cells is mediated by the constitutive activation of signal transduction pathways through mTORC2. Br J Cancer. 2013;109(9):2389–95. doi:10.1038/bjc.2013.602.PubMedPubMedCentralCrossRefGoogle Scholar119.Juengel E, Dauselt A, Makarevic J, Wiesner C, Tsaur I, Bartsch G, et al. Acetylation of histone H3 prevents resistance development caused by chronic mTOR inhibition in renal cell carcinoma cells. Cancer Lett. 2012;324(1):83–90. doi:10.1016/j.canlet.2012.05.003.PubMedCrossRefGoogle Scholar120.Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 2008;118(9):3065–74. doi:10.1172/JCI34739.PubMedPubMedCentralGoogle Scholar121.Zhao Y, Ehara H, Akao Y, Shamoto M, Nakagawa Y, Banno Y, et al. Increased activity and intranuclear expression of phospholipase D2 in human renal cancer. Biochem Biophys Res Commun. 2000;278(1):140–3. doi:10.1006/bbrc.2000.3719.PubMedCrossRefGoogle Scholar122.Hammerman PS, Fox CJ, Birnbaum MJ, Thompson CB. Pim and Akt oncogenes are independent regulators of hematopoietic cell growth and survival. Blood. 2005;105(11):4477–83. doi:10.1182/blood-2004-09-3706.PubMedPubMedCentralCrossRefGoogle Scholar123.Zhang F, Beharry ZM, Harris TE, Lilly MB, Smith CD, Mahajan S, et al. PIM1 protein kinase regulates PRAS40 phosphorylation and mTOR activity in FDCP1 cells. Cancer Biol Ther. 2009;8(9):846–53.PubMedCrossRefGoogle Scholar124.Dilling MB, Germain GS, Dudkin L, Jayaraman AL, Zhang X, Harwood FC, et al. 4E-binding proteins, the suppressors of eukaryotic initiation factor 4E, are down-regulated in cells with acquired or intrinsic resistance to rapamycin. J Biol Chem. 2002;277(16):13907–17. doi:10.1074/jbc.M110782200.PubMedCrossRefGoogle Scholar125.Graff JR, Konicek BW, Carter JH, Marcusson EG. Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res. 2008;68(3):631–4. doi:10.1158/0008-5472.CAN-07-5635.PubMedCrossRefGoogle Scholar126.Luo Y, Marx SO, Kiyokawa H, Koff A, Massague J, Marks AR. Rapamycin resistance tied to defective regulation of p27Kip1. Mol Cell Biol. 1996;16(12):6744–51. doi:10.1128/MCB.16.12.6744.PubMedPubMedCentralCrossRefGoogle Scholar127.Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B, et al. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res. 2009;69(15):6232–40. doi:10.1158/0008-5472.CAN-09-0299.PubMedCrossRefGoogle Scholar128.Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem. 2009;284(12):8023–32. doi:10.1074/jbc.M900301200.PubMedPubMedCentralCrossRefGoogle Scholar129.Chresta CM, Davies BR, Hickson I, Harding T, Cosulich S, Critchlow SE, et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 2010;70(1):288–98. doi:10.1158/0008-5472.CAN-09-1751.PubMedCrossRefGoogle Scholar130.Rodrik-Outmezguine VS, Okaniwa M, Yao Z, Novotny CJ, McWhirter C, Banaji A, et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature. 2016;534(7606):272–6. doi:10.1038/nature17963.PubMedPubMedCentralGoogle Scholar131.Thomas HE, Mercer CA, Carnevalli LS, Park J, Andersen JB, Conner EA, et al. mTOR inhibitors synergize on regression, reversal of gene expression, and autophagy in hepatocellular carcinoma. Sci Transl Med. 2012;4(139):139ra84. doi:10.1126/scitranslmed.3003923.PubMedPubMedCentralCrossRefGoogle Scholar132.Carlo MI, Molina AM, Lakhman Y, Patil S, Woo K, DeLuca J, et al. A Phase Ib Study of BEZ235, a Dual Inhibitor of Phosphatidylinositol 3-Kinase (PI3K) and Mammalian Target of Rapamycin (mTOR), in Patients With Advanced Renal Cell Carcinoma. Oncologist. 2016;21(7):787–8. doi:10.1634/theoncologist.2016-0145.PubMedPubMedCentralCrossRefGoogle Scholar133.Di Lorenzo G, Buonerba C, Federico P, Rescigno P, Milella M, Ortega C, et al. Third-line sorafenib after sequential therapy with sunitinib and mTOR inhibitors in metastatic renal cell carcinoma. Eur Urol. 2010;58(6):906–11. doi:10.1016/j.eururo.2010.09.008.PubMedCrossRefGoogle Scholar134.Grunwald V, Seidel C, Fenner M, Ganser A, Busch J, Weikert S. Treatment of everolimus-resistant metastatic renal cell carcinoma with VEGF-targeted therapies. Br J Cancer. 2011;105(11):1635–9. doi:10.1038/bjc.2011.389.PubMedPubMedCentralCrossRefGoogle Scholar135.Porta C, Paglino C, Procopio G, Sabbatini R, Bellmunt J, Schmidinger M et al. Optimizing the sequential treatment of metastatic renal cell carcinoma (mRCC)—a retrospective, multicenter, analysis of 40 patients treated with either Sorafenib, an mTOR inhibitor (mTORI) and Sunitinib, or Sunitinib, an mTORI and Sorafenib. Eur J Cancer. 2011;47(Suppl 1):(Abstract 7131).136.Blesius A, Beuselinck B, Chevreau C, Ravaud A, Rolland F, Oudard S, et al. Are tyrosine kinase inhibitors still active in patients with metastatic renal cell carcinoma previously treated with a tyrosine kinase inhibitor and everolimus? Experience of 36 patients treated in France in the RECORD-1 Trial. Clin Genitourin Cancer. 2013;11(2):128–33. doi:10.1016/j.clgc.2012.12.001.PubMedCrossRefGoogle Scholar137.Oudard S, Gross-Goupil M, Geoffrois L, Guillot A, Chevreau C, Deville JL et al., editors. Clinical activity of sunitinib rechallenge in metastatic renal cell carcinoma (mRCC) - Results of the RESUME study. ESMO 2014; 29th September; Madrid, Spain.138.Mita MM, Mita AC, Chu QS, Rowinsky EK, Fetterly GJ, Goldston M, et al. Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol. 2008;26(3):361–7. doi:10.1200/JCO.2007.12.0345.PubMedCrossRefGoogle Scholar139.Powles T, Wheater M, Din O, Geldart T, Boleti E, Stockdale A, et al. A Randomised Phase 2 Study of AZD2014 Versus Everolimus in Patients with VEGF-Refractory Metastatic Clear Cell Renal Cancer. Eur Urol. 2016;69(3):450–6. doi:10.1016/j.eururo.2015.08.035.PubMedCrossRefGoogle Scholar140.Iacovelli R, Carteni G, Sternberg CN, Milella M, Santoni M, Di Lorenzo G, et al. Clinical outcomes in patients receiving three lines of targeted therapy for metastatic renal cell carcinoma: results from a large patient cohort. Eur J Cancer. 2013;49(9):2134–42. doi:10.1016/j.ejca.2013.02.032.PubMedCrossRefGoogle ScholarCopyright information© Springer International Publishing Switzerland 2016Authors and AffiliationsI. Duran12J. Lambea3P. Maroto4J. L. González-Larriba5Luis Flores6S. Granados-Principal78M. Graupera9B. Sáez10A. Vivancos11O. Casanovas12Email author1.Sección de Oncología MédicaHospital Universitario Virgen del RocíoSevillaSpain2.Laboratorio de Terapias Avanzadas y Biomarcadores en OncologíaInstituto de Biomedicina de SevillaSevillaSpain3.Servicio de Oncología MédicaHospital Clínico Universitario Lozano BlesaZaragozaSpain4.Servicio de Oncología MédicaHospital de la Santa Creu i Sant PauBarcelonaSpain5.Servicio de Oncología MédicaHospital Clínico San CarlosMadridSpain6.Novartis OncologyBarcelonaSpain7.Servicio de Oncología MédicaComplejo Hospitalario de JaénJaénSpain8.GENYO, Centre for Genomics and Oncological Research (Pfizer/University of Granada/Andalusian Regional Government), PTS GranadaGranadaSpain9.Institut d’Investigació Biomèdica de Bellvitge-IDIBELLBarcelonaSpain10.Departmento de Bioquímica, Biología Molecular y Celular, Instituto Universitario de Investigación en Nanociencia de AragónUniversidad de ZaragozaZaragozaSpain11.Departamento de Bioquímica y Biología MolecularUniversidad Pompeu FabraBarcelonaSpain12.ProCURE Research Program, Institut Català d’Oncologia-IDIBELLL’Hospitalet de LlobregatBarcelonaSpain About this article CrossMark Publisher Name Springer International Publishing Print ISSN 1776-2596 Online ISSN 1776-260X About this journal Reprints and Permissions Co-published with

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700