用户名: 密码: 验证码:
Degradation of Soil Humic Extract by Wood- and Soil-Associated Fungi, Bacteria, and Commercial Enzymes
详细信息    查看全文
文摘
An alkaline humic extract (HE) of a black calcareous forest mull was exposed to 36 fungal and 9 eubacterial isolates in liquid standing culture. At 21 d in fungi, and 4 d in bacteria, the groups of wood-degrading basidiomycetes, terricolous basidiomycetes, ectomycorrhizal fungi, soil-borne microfungi, and eubacteria had reduced the absorbance (A 340) of HE media by 57, 28, 19, 26 and 5 % , respectively. Gel permeation chromatography revealed that the large humic acid molecules were more readily degraded than the smaller fulvic acid molecules and served as a sole source of carbon and energy. The more active HE degraders reduced the overall molecular weight of humic and fulvic acids by 0.25 to 0.47 kDa. They also reduced the chemical reactivity of HE to tetrazotized o-dianisidine, indicating the degradation of hydroxylated aromatic molecules (which are responsible for this reaction). Decreases in absorbance, molecular weight, and reactivity were caused by fungal manganese peroxidase, horseradish peroxidase, β-glucosidase, and abiotic oxidants such as H2O2 and Mn(III) acetate. It is concluded that fungi, some of which are propagated in contaminated soils to control xenobiotics, metabolize HE compounds enzymatically. They use enzymes which are also involved in the degradation of soil xenobiotics. Because of reductions in the molecular weight of HE, which is a potential carrier of heavy metal ions and xenobiotics, solubility and motility of humic substances in soil and surface waters are increased.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700