用户名: 密码: 验证码:
A bioactive foam reactor for the removal of volatile organic compounds: system performance and model development
详细信息    查看全文
  • 作者:JiHyeon Song ; Yongsik Kim ; Younggyu Son and Jeehyeong Khim
  • 关键词:Bioactive foam reactor ; Surfactant ; Volatile organic compounds ; Mass transfer
  • 刊名:Bioprocess and Biosystems Engineering
  • 出版年:2007
  • 出版时间:November, 2007
  • 年:2007
  • 卷:30
  • 期:6
  • 页码:439-446
  • 全文大小:344 KB
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Industrial Chemistry and Chemical Engineering
    Industrial and Production Engineering
    Waste Management and Waste Technology
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Food Science
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1615-7605
文摘
A bioactive foam reactor (BFR), a novel bioreactor operated using surfactant foams and suspended microorganisms for the treatment of gaseous toluene, was investigated to characterize its performance with respect to the mass transfer and biodegradation rates. The BFR system consisted of two reactors in series; a foam column for toluene mass transfer using fine bubbles and a cell reservoir where suspended microorganisms actively biodegraded toluene. In this study, a series of short-term experiments demonstrated that the BFR could achieve stable removal performance and a high elimination capacity (EC) for toluene at 100.3 g/m3/h. A numerical model, combining mass balance equations for the mass transfer and subsequent biodegradation, resulted in reasonable agreement with the experimental findings. At an inlet toluene concentration of 100 ppmv, the toluene concentration in the liquid phase remained extremely low, indicating that the microbial activity was not hindered in the BFR system. However, the experimental and model prediction results showed that the actual mass of toluene transferred into the liquid phase was not closely balanced with the amount of toluene biodegraded in the BFR used in this study. Consequently, methods, such as increasing the effective volume of the foam column or the mass transfer coefficient, need to be implemented to achieve higher toluene EC and better BFR performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700