用户名: 密码: 验证码:
Mineralogy and Weathering of Smelter-Derived Spherical Particles in Soils: Implications for the Mobility of Ni and Cu in the Surficial Environment
详细信息    查看全文
  • 作者:Sonia Lanteigne (1)
    Michael Schindler (1) mschindler@laurentian.ca
    Andrew M. McDonald (1)
    Kristina Skeries (2)
    Yassir Abdu (3)
    Nathalie M. Mantha (1)
    Mitsuhiro Murayama (4)
    Frank C. Hawthorne (3)
    Michael F. Hochella Jr. (5)
  • 关键词:Soils – Particulates – Heavy metals – Smelter
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2012
  • 出版时间:September 2012
  • 年:2012
  • 卷:223
  • 期:7
  • 页码:3619-3641
  • 全文大小:1.6 MB
  • 参考文献:1. Adamo, P., Dudka, S., Wilson, M. J., & McHardy, W. J. (1996). Chemical and mineralogical forms of Cu and Ni in contaminated soils from the Sudbury mining and smelting region. Canada. Environ. Pollut., 91, 11–19.
    2. Ahlawat, A., & Sathe, V. G. (2010). Raman study of NiFe2O4 nanoparticles, bulks and films: Effect of laser power. J. Raman Spectroscopy., 42, 1087–1094.
    3. Alloway B.J.(1990) Soil processes and the behaviour of metals. In B.J. Alloway (Ed.), Heavy metals in soils. New York: Wiley, 339. p.7-28.
    4. Anand, R. R., & Gilkes, R. J. (1984). Mineralogical and chemical properties of weathered magnetite grains from lateritic saprolite. J. Soil Science., 35, 559–567.
    5. Anastasio, C., & Martin, S. T. (2001). Atmospheric nanoparticles. Reviews in Mineralogy and Geochemistry, 44, 293–349.
    6. Baker D.E. (1990) Copper metals in soils. In B.J. Alloway (Ed.), Heavy metals in soils. New York: Wiley, 339. p.151-176.
    7. Bao, H. M., & Reheis, M. C. (2003). Multiple oxygen and sulfur isotopic analyses on water-soluble sulfate in bulk atmospheric deposition from the southwestern United States. J. Geophysi. Res., 108, 4430–4438.
    8. Batonneau, Y., Bremard, C., Gegembre, L., Laureyns, J., LeMaguer, A., LeMaguer, D., Perdrix, E., & Sobanska, S. (2004). Speciation of PM sources of airborne nonferrous metals within the 3-km zone of lead/zinc smelters. Environmental Science and Technology, 38, 5281–5289.
    9. Brock, C. A., Hamill, P., Wilson, J. C., Jonsson, H. H., & Chan, K. R. (1995). Particle formation in the upper tropical troposphere—A source of nuclei for the stratospheric aerosol. Science, 270, 1650–1653.
    10. Campbell, J. L., McDonald, A. M., Perrett, G. M., & Taylor, S. M. (2011). A GUPIX-based approach to interpreting the PIXE-plus-XRF spectra from the Mars Exploration rovers: II geochemical reference materials. Nuclear InstrumMethods in Phys. Res. Sec B., 269, 69–81.
    11. Chan W.H., Lusis M.A., Vet R., and Skelton B.G. (1982) Size distribution and emission rate measurements of particulates in the Inco 381 m chimney and iron ore recovery plant stack fumes, 1979–80. Sudbury Environmental Study, Ontario Ministry of Environment. p.101.
    12. Cheng, Z., Abernathy, H., & Liu, M. (2007). Raman spectroscopy of nickel sulfide Ni3S2. Phys. Chem. C, 111, 17997–18000.
    13. Connolly, H. C., & Hewins, R. H. (1995). Chondrules as products of dust collisions with totally molten droplets within a dust-rich nebular environment: An experimental investigation. Geochim. Cosmochim., 59, 3231–3246.
    14. Cornell, R. M., Schneider, W., & Giovanoli, R. (1992). The effect of nickel on the conversion of amorphous iron(III) hydroxide into more crystalline iron oxides in alkaline media. J. Chem. Tech. Biot., 53, 73–79.
    15. Cornell R.M. and Schwertmann U. (1996) The iron oxides. Structure, properties, reactions, occurrences and uses. New York: VCH Verlagsgesellschaft.
    16. Davies, B. E. (1983). Heavy metal contamination from base metal mining and smelting: Implications for man and his environment. Appl. Environ. Geochem., 1, 425–462.
    17. De Faria, D. L. A., Silva, S. V., & De Oliveira, M. T. (1997). Raman microspectroscopy of some iron oxide and oxyhydroxides. J. Raman Spectroscopy., 28, 873–878.
    18. Dollase, W. A. (1986). Correction of intensities for preferred orientation in powder diffractometry: Application of the March model. Journal of Applied Crystallography, 19, 267–272.
    19. Dutrizac, J. E., & Chen, T. T. (1987). A mineralogical study of the phases formed during the CuSO4–H2SO4–O2 leaching of nickel-copper matte. Can. Metallurg. Quart., 26, 265–276.
    20. Dural, J. (2009). Thermal instability of the tetragonally distorted structure of copper–iron materials. Z. Kristallogr. Suppl., 30, 335–340.
    21. Durocher, J., & Schindler, M. (2011). Iron-hydroxide, iron-sulfate and hydrous silica coatings in acid-mine tailings facilities: A comparative study of their trace-element composition. Applied Geochem., 26, 1337–1352.
    22. Ertseva, L. N., Korotkova, O. V., Seregin, P. S., & Fokeeva, I. G. (2003). Distribution of micro-impurities among phases of converter and matte from Pechenganikel’s combine. Russ. J. Applied Chem., 76, 884–887.
    23. Evans J.P., Mackey P.J., and Scott J.D.(1991) Smelter gas cleaning. Impact of gas cooling techniques on smelter dust segregation. In T.J.A. Smith and C.J. Newman (Eds.), Smelter process gas handling and treatment (p. 135-145). Metals and Materials Society, Warrendale.
    24. Faungnawakij, K., Shimoda, N., Fukunaga, T., Kikuchi, R., & Eguchi, K. (2009). Crystal structure and surface species of CuFe2O4 spinel catalysts in steam reforming of dimethyl ether. Appl. Catalysis B: Environ. 92, 341–350.
    25. Faure, G. (1998). Principles and applications of geochemistry (2nd ed., p. 600p). New Jersey: Prentice-Hall.
    26. Freedman, B., & Hutchinson, T. C. (1980). Pollutant inputs from the atmosphere and accumulations in soils and vegetation near a nickel-copper smelter at Sudbury, Ontario, Canada. Canadian Journal of Botany, 58, 108–132.
    27. Gieré, R., & Querol, X. (2010). Solid particulate matter in the atmosphere. Elements., 6, 215–222.
    28. Gilkes, R. J., & Suddliprakarn, A. (1979). Magnetite alteration in deeply weathered adamelite. J. Soil Science., 30, 357–361.
    29. Gbor, P. K., Ahmed, I. B., & Jia, C. Q. (2000). Behaviour of Co and Ni during aqueous sulphur dioxide leaching of nickel smelter slag. Hydrometallurgy, 57, 13–22.
    30. Gregurek, D., Reimann, C., & Stumplf, E. F. (1998). Mineralogical fingerprints of industrial emissions—an example from Ni mining and smelting on the Kola Peninsula, NW Russia. Science Total Environ., 221, 189–200.
    31. Gregurek, D., Melcher, F., Pavlov, V. A., Reimann, C., & Stumpfl, E. F. (1999). Mineralogy and mineral chemistry of snow filter residues in the vicinity of the nickel–copper processing industry, Kola Peninsula, NW Russia. Mineralogy and Petrology, 65, 87–111.
    32. Hamill, P., Jensen, E. J., Russell, P. B., & Bauman, J. J. (1997). The life cycle of stratospheric aerosol particles. Bull. Am. Meteor. Soc., 78, 1395–1410.
    33. Henderson, P. J., McMartin, L., Hall, G. E., Percival, J. B., & Walker, D. A. (1998). The chemical and physical characteristics of heavy metals in humus and till in the vicinity of the base metal smelter at FlinFlon, Manitoba, Canada. Environ. Geolog., 34, 39–58.
    34. Hogan, G. D., & Wotton, D. L. (1984). Pollutant distribution and effects on forests adjacent to smelters. Journal of Environmental Quality, 13, 377–382.
    35. Huson, D. R., & Travis, G. A. (1961). A native nickel–heazlewoodite–ferroantrevorite assemblage from Mount Clifford, Western Australia. Economic Geology, 76, 1686–1697.
    36. Hutchinson, T. C., & Whitby, L. M. (1974). Heavy-metal pollution in the Sudbury mining and smelting region of Canada, I. Soil and vegetation contamination by nickel, copper, and other metals. Environmental Conservation, 1, 123–131.
    37. Jackson, T. A. (1978). The biogeochemistry of heavy metals in polluted lakes and streams at FlinFlon, Canada, and a proposed method for limiting heavy-metal pollution of natural waters. Environmental Geology, 2, 173–189.
    38. Kalkstein, L. S., & Greene, J. S. (1997). An evaluation of climate/mortality relationships in large U.S. cities and the possible impacts of a climate change. Environmental Health Perspectives, 105, 84–93.
    39. Kirkpatrick, R. J. (1975). Crystal growth from the melt—a review. American Mineralogist, 60, 798–814.
    40. Kliza, D. A., Telmer, K. T., Bonham-Carter, G. F., Hall, G. E. M. (2000). Geochemistry of snow from the Rouyn-Noranda region of western Quebec: An environmental database. Open File, 3869.
    41. Knight, R. D., & Henderson, P. J. (2006). Smelter dust in humus around Rouyn-Noranda, Quebec. Geochem. Exploit. Environ. Analys., 6, 203–214.
    42. Knight R.D., and Henderson P.J. (2005) Characterization of smelter dust from the mineral fraction of humus collected around Rouyn-Noranda, Quebec. In G. Bonham-Carter (Ed.) Metals in the environment around smelters at Rouyn-Noranda, Quebec, and Belledune, New Brunswick: Results and conclusions of the GSC-MITE Point Sources Project. Bulletin, 584. Geological Survey of Canada.
    43. Lastra-Quintero, R. (1998). Characterization and separation of a copper smelter dust residue. Can. Metallurg. Quarterly., 26, 85–90.
    44. Lofgren, G. (1974). An experimental study of plagioclase morphology. American Journal of Science, 264, 243–273.
    45. Lowe, L. E. (1989). Carbohydrates in soil. In M. Schnitzer & S. U. Khan (Eds.), Soil Organic matter (pp. 65–69). New York: Elsevier.
    46. Lu, Z., & Muir, D. M. (1987). Dissolution of metal ferrites and iron oxides by HCl under oxidizing and reducing conditions. Hydrometallurgy, 21, 9–21.
    47. Mantha, N. M., Schindler, M., Murayama, M., Hochella, M. F. Jr. (2012) Silica- and sulfate-bearing rock coatings in smelter areas: Products of chemical weathering and atmospheric pollution I. Formation and mineralogical composition. Geochim. Cosmochim. Acta. doi:doi:10.1016/j.gca.2012.01.033
    48. Mantha N. and Schindler M. (2012) Silica- and sulfate-bearing rock coatings in smelter areas: Products of chemical weathering and atmospheric pollution. II. Metal and Metalloid composition. Geochim. Cosmochim. (in press)
    49. McCammon, C. (1995). M?ssbauer spectroscopy of minerals. Mineral physics and crystallography. A handbook of physical constants. Washington: AGU.
    50. McNear, D. H., Jr., Chaney, R. L., & Sparks, D. L. (2007). The effects of soil type and chemical treatment on nickel speciation in refinery enriched soils: A multi-technique investigation Geochim. Cosmochim. Acta., 71, 2190–2208.
    51. Morris, R. V., Kligelh?fer, G., Bernhardt, B., Schr?der, C., Radionov, D. S., de Souza Jr, P. A., Yen, A., Gellert, R., Evlanov, E. N., Foh, K. E., Gütlich, P., Ming, D. W., Fenz, F., Wdowiak, T., Squyres, S. W., & Arvidson, R. E. (2004). Mineralogy at Gusev Crater from the M?ssbauer spectrometer on the Spirit rover. Science, 305, 833–836.
    52. National Institute of Advanced Industrial Science and Technology (NIAIST) (2005). Atlas of Eh-pH diagrams, Intercomparison of thermodynamic databases. In N. Takeno (Ed.), Geological Survey of Japan Open File Report No.419, 1–287.
    53. Norman, A. L., Belzer, W., & Barrie, L. A. (2004). Insights into the biogenic contribution to total sulphate in aerosol and precipitation in the Fraser Valley afforded by isotopes of sulphur and oxygen. Journal of Geophysical Research, 109, 5311–5320.
    54. Nriagu, J. O., & Wong, H. K. (1983). Selenium pollution of lakes near the smelters at Sudbury, Ontario. (1983). Nature, 301, 55–57.
    55. Ozvacic V. (1982) Emissions of sulphur oxides, particulates and trace elements in the Sudbury basin. Ontario Ministry of Environment report SES 008/82, pp. 82.
    56. Pavunny S.P., Kumar A., Katiyar R.S. (2010) Raman spectroscopy and field emission characterization of delafossite CuFeO2. Journal of Applied Physics. 107, 013522(1-7).
    57. Tan, P., & Zhang, C. (1997). Thermodynamic analysis of nickel smelting Process. Journal of Central South University of Technology, 4, 84–88.
    58. Piatak, N. M., Seal, R. R. I. I., & Hammarstrom, J. M. (2004). Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious-metal smelting at abandoned mine sites. Applied Geochemistry, 19, 1039–1064.
    59. Piatak, N. M., & Seal, R. R., II. (2010). Mineralogy and the release of trace elements from slag from the Hegeler Zinc smelter, Illinois (USA). Applied Geochemistry, 25, 302–320.
    60. Pope, C. A., Ezzati, M., & Dockery, D. W. (2009). Fine-particulate air pollution and life expectancy in the United States. The New England Journal of Medicine, 360, 376–386.
    61. Samuelsson, C., & Bjorkman, B. (1998). Dust forming mechanisms in the gas cleaning system after the copper converting process. (I) Sampling and characterization. Scand. J. Metallurg., 27, 54–63.
    62. Santana, G. P., Fabris, J. D., Goulart, A. T., & Santana, D. P. (2001). Magnetite and its transformation to hematite in a soil derived from steatite. R. Bras. Ci. Solo., 25, 33–42.
    63. Satta, A., Shamiryan, D., Baklanov, M. R., Whelan, C. M., Quoc, T. L., Beyer, G. P., Vantomme, A., & Maex, K. (2003). The removal of copper oxides by ethyl alcohol monitored in situ by spectroscopic ellipsometry. Journal of the Electrochemical Society, 150, 300–306.
    64. Schindler, M., Durocher, J., Abdu, Y., & Hawthorne, F. C. (2009). Hydrous silica coatings: Occurrence, speciation of metals and environmental significance. Environ. Science Tech., 43, 8775–8780.
    65. Schindler, M., Fayek, M., & Hawthorne, F. C. (2010). Uranium in opaline rock-coatings at the Uranium Ore Deposit Nopal 1, Pena Blanca, Mexico: Indications for the uptake and retardation of radionuclides. Geochim. Cosmochim., 74, 187–202.
    66. Sidhu, P. S., Gilkes, R. J., & Posner, A. M. (1981). Oxidation and ejection of nickel and zinc from natural and synthetic magnetites. Soil Science Society of America Journal, 45, 641–644.
    67. Stepakova, L.V., Skirpkin, M. Yu., Korneeva, V.V., Grigoriev, Ya. M. and Burkov, K.A. (2006) Effect of the oxidation state of copper on the solution-solid phase equilibria in CuClx–MCl–H2O systems. Rus. J. Gen. Chem. 76,512-516.
    68. Stumm, W. (1992). Chemistry of the solid–water interface (p. 428). New York: Wiley.
    69. Tang, X. X., Manthiram, A., & Goodenough, J. B. (1989). Copper ferrite revisited. J. Solid State Chem., 79, 250–262.
    70. Thyse, E. L., Akdogan, G., Taskined, P., & Eksteen, J. J. (2011). The distribution of metallic elements in granulated nickel converter matte phase. South African Pyrometallurgy, 2011(1), 173–184.
    71. Utsunomiya, S., Jensen, K. A., Keeler, G. J., & Ewing, R. C. (2004). Direct identification of trace metals in fine and ultra-fine particles in the Detroit urban atmosphere. Environmental Science and Technology, 38, 2289–2297.
    72. Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil. Sci. Plant. Nutr., 10, 268–292.
    73. Vitkova, M., Ettler, V., Kribek, B., Sebek, O., & Mihaljevic, M. (2010). Primary and secondary phases in copper–cobalt smelting slags from the Copperbelt Province Zambia. Mineralogical Magazine, 74, 581–600.
    74. Wang, J. H., Cheng, Z., Bredas, J. L., & Liu, M. (2007). Electronic and vibrational properties of nickel sulfides from first principles. Journal of Chemical Physics, 127, 214705-1–214705-8.
    75. Weinbruch, S., Van Aken, P., Ebert, M., Thomassen, Y., Skogstad, A., Chashchin, V. P., & Nikonov, A. (2002). The heterogeneous composition of working place aerosols in a nickel refinery: A transmission and scanning electron microscope study. Journal of Environmental Monitoring, 4, 344–350.
    76. Whitby, L. M., Stokes, P. M., Hutchinson, T. C., & Myslik, G. (1976). Ecological consequence of acidic and heavy-metal discharges from the Sudbury smelters. The Canadian Mineralogist, 14, 47–57.
    77. Wren, C. (2012). Risk assessment and environmental management: A case study in Sudbury, Ontario, Canada. Progress in Environmental Science, Technology and Management, 1, 1–450.
    78. Zoltai, S. (1988). Distribution of base metals in peat near a smelter at FlinFlon. Manitoba. Water, Air, and Soil Pollution, 37, 217–228.
  • 作者单位:1. Department of Earth Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada2. Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ON, Canada3. Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada4. Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA5. Center for NanoBioEarth, Department of Geosciences, Virginia Tech, Blacksburg, VA 24061-0420, USA
  • ISSN:1573-2932
文摘
Spherical particles have been sampled from soils and silica-rich rock coatings close to major smelter centers at Coppercliff, Coniston, and Falconbridge in the Sudbury area, Canada. Detailed analyses employing optical microscopy, scanning electron microscopy, transmission electron microscopy, micro-Raman spectroscopy, and M?ssbauer spectroscopy have been conducted to elucidate their nature, origin and potential alteration. The spherical particles are on the nano- to millimeter-size range and are composed principally of magnetite, hematite, Fe-silicates (olivine, pyroxenes), heazlewoodite, bornite, pyrrhotite, spinels (including trevorite and cuprospinel), delafossite, and cuprite or tenorite. The spinels present have variable Cu and Ni contents, whereas delafossite and cuprite are Ni free. Texturally, the spherical particles are composed of a Fe-oxide–Fe-silicate matrix with sulfide inclusions. The matrix displays growth features of a Fe-rich phase that commonly form during rapid cooling and transformation processes within smelter and converter facilities. Examination of weathered spherical particles indicates that some sulfide inclusions have dissolved prior to the alteration of the Fe-silicates and oxides and that the weathering of Fe-silicates occurs simultaneously with the transformation of magnetite into hematite. A higher proportion of Cu vs. Ni in the clay and organic fraction noted in the Sudbury soils is explained by (1) the formation of stronger adsorption complexes between Cu and the corresponding surface species and (2) the preferential release of Cu vs. Ni by smelter-derived particles. The latter mechanism is based on the observations that (a) cuprospinels have higher dissolution rates than Ni spinels, (b) a larger proportion of Cu occurs in the nanometer-size (and thus more soluble) fraction of the emitted particles, and (c) Ni spinels of relatively low solubility form in the alteration zone of heazlewoodite inclusions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700