用户名: 密码: 验证码:
On the Estimation of Total Arterial Compliance from Aortic Pulse Wave Velocity
详细信息    查看全文
  • 作者:Orestis Vardoulis (1)
    Theodore G. Papaioannou (1)
    Nikolaos Stergiopulos (1)
  • 关键词:Arterial stiffness ; PWV ; Distensibility ; Pressure waves ; 1 ; D model ; Elasticity ; Windkessel ; Wave speed ; Systemic circulation
  • 刊名:Annals of Biomedical Engineering
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:40
  • 期:12
  • 页码:2619-2626
  • 全文大小:530KB
  • 参考文献:1. Bergel, D. H. The dynamic elastic properties of the arterial wall. / J. Physiol. 156:458-69, 1961.
    2. Borlotti, A., S. Vermeersch, E. Rietzschel, P. Segers, and A. W. Khir. A comparison between local wave speed in the carotid and femoral arteries in healthy humans: application of a new method. / Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010:2857-860, 2010.
    3. Bramwell, J. C., and A. V. Hill. The velocity of the pulse wave in man. / Proc. R. Soc. Lond. B 93:298-06, 1922. CrossRef
    4. Chemla, D., I. Antony, Y. Lecarpentier, and A. Nitenberg. Contribution of systemic vascular resistance and total arterial compliance to effective arterial elastance in humans. / Am. J. Physiol. Heart Circ. Physiol. 285:H614–H620, 2003.
    5. Chiu, Y. C., P. W. Arand, S. G. Shroff, T. Feldman, and J. D. Carroll. Determination of pulse wave velocities with computerized algorithms. / Am. Heart J. 121:1460-470, 1991. CrossRef
    6. de Simone, G., M. J. Roman, S. R. Daniels, G. Mureddu, T. R. Kimball, R. Greco, and R. B. Devereux. Age-related changes in total arterial capacitance from birth to maturity in a normotensive population. / Hypertension 29:1213-217, 1997. CrossRef
    7. Haluska, B. A., L. Jeffriess, M. Downey, S. G. Carlier, and T. H. Marwick. Influence of cardiovascular risk factors on total arterial compliance. / J. Am. Soc. Echocardiogr. 21:123-28, 2008. CrossRef
    8. Haluska, B. A., K. Matthys, R. Fathi, E. Rozis, S. G. Carlier, and T. H. Marwick. Influence of arterial compliance on presence and extent of ischaemia during stress echocardiography. / Heart 92:40-3, 2006. CrossRef
    9. Holenstein, R., P. Niederer, and M. Anliker. A viscoelastic model for use in predicting arterial pulse waves. / J. Biomech. Eng. 102:318-25, 1980. CrossRef
    10. Langerwouters, G. J. Visco-elasticity of the human aorta in vitro in relation to pressure and age. Ph.D. Dissertation, Vrije Universiteit, Amsterdam, p. 221, 1982.
    11. Laurent, S., P. Boutouyrie, R. Asmar, I. Gautier, B. Laloux, L. Guize, P. Ducimetiere, and A. Benetos. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. / Hypertension 37:1236-241, 2001. CrossRef
    12. Laurent, S., J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, and H. Struijker-Boudier. Expert consensus document on arterial stiffness: methodological issues and clinical applications. / Eur. Heart J. 27:2588-605, 2006. CrossRef
    13. Liu, Z., K. P. Brin, and F. C. Yin. Estimation of total arterial compliance: an improved method and evaluation of current methods. / Am. J. Physiol. 251:H588–H600, 1986.
    14. Mackenzie, I. S., I. B. Wilkinson, and J. R. Cockcroft. Assessment of arterial stiffness in clinical practice. / QJM 95:67-4, 2002. CrossRef
    15. Mancia, G., G. De Backer, A. Dominiczak, R. Cifkova, R. Fagard, G. Germano, G. Grassi, A. M. Heagerty, S. E. Kjeldsen, S. Laurent, / et al. Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). / J. Hypertens. 25:1105-187, 2007. CrossRef
    16. Matsushima, Y., H. Kawano, Y. Koide, T. Baba, G. Toda, S. Seto, and K. Yano. Relationship of carotid intima-media thickness, pulse wave velocity, and ankle brachial index to the severity of coronary artery atherosclerosis. / Clin. Cardiol. 27:629-34, 2004. CrossRef
    17. Mattace-Raso, F. U., T. J. van der Cammen, A. Hofman, N. M. van Popele, M. L. Bos, M. A. Schalekamp, R. Asmar, R. S. Reneman, A. P. Hoeks, M. M. Breteler, / et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. / Circulation 113:657-63, 2006. CrossRef
    18. Megnien, J. L., A. Simon, N. Denarie, M. Del-Pino, J. Gariepy, P. Segond, and J. Levenson. Aortic stiffening does not predict coronary and extracoronary atherosclerosis in asymptomatic men at risk for cardiovascular disease. / Am. J. Hypertens. 11:293-01, 1998. CrossRef
    19. Mitchell, G. F., S. J. Hwang, R. S. Vasan, M. G. Larson, M. J. Pencina, N. M. Hamburg, J. A. Vita, D. Levy, and E. J. Benjamin. Arterial stiffness and cardiovascular events: the Framingham Heart Study. / Circulation 121:505-11, 2010. CrossRef
    20. Mottram, P. M., B. A. Haluska, R. Leano, S. Carlier, C. Case, and T. H. Marwick. Relation of arterial stiffness to diastolic dysfunction in hypertensive heart disease. / Heart 91:1551-556, 2005. CrossRef
    21. Pannier, B., A. P. Guerin, S. J. Marchais, M. E. Safar, and G. M. London. Stiffness of capacitive and conduit arteries: prognostic significance for end-stage renal disease patients. / Hypertension 45:592-96, 2005. CrossRef
    22. Papaioannou, T. G., D. S. Mathioulakis, and S. G. Tsangaris. Simulation of systolic and diastolic left ventricular dysfunction in a mock circulation: the effect of arterial compliance. / J. Med. Eng. Technol. 27:85-9, 2003. CrossRef
    23. Protogerou, A. D., M. E. Safar, P. Iaria, H. Safar, K. Le Dudal, J. Filipovsky, O. Henry, P. Ducimetiere, and J. Blacher. Diastolic blood pressure and mortality in the elderly with cardiovascular disease. / Hypertension 50:172-80, 2007. CrossRef
    24. Rabben, S. I., N. Stergiopulos, L. R. Hellevik, O. A. Smiseth, S. Slordahl, S. Urheim, and B. Angelsen. An ultrasound-based method for determining pulse wave velocity in superficial arteries. / J. Biomech. 37:1615-622, 2004. CrossRef
    25. Reymond, P., Y. Bohraus, F. Perren, F. Lazeyras, and N. Stergiopulos. Validation of a patient-specific one-dimensional model of the systemic arterial tree. / Am. J. Physiol. Heart Circ. Physiol. 301:H1173–H1182, 2011. CrossRef
    26. Reymond, P., F. Merenda, F. Perren, D. Rufenacht, and N. Stergiopulos. Validation of a one-dimensional model of the systemic arterial tree. / Am. J. Physiol. Heart Circ. Physiol. 297:H208–H222, 2009. CrossRef
    27. Safar, M. E., and G. M. London. Arterial and venous compliance in sustained essential hypertension. / Hypertension 10:133-39, 1987. CrossRef
    28. Sagawa, K. Cardiac Contraction and the Pressure–Volume Relationship. Oxford, UK: Oxford University Press, 1988.
    29. Sakuragi, S., and W. P. Abhayaratna. Arterial stiffness: methods of measurement, physiologic determinants and prediction of cardiovascular outcomes. / Int. J. Cardiol. 138:112-18, 2010. CrossRef
    30. Segers, P., P. Verdonck, Y. Deryck, S. Brimioulle, R. Naeije, S. Carlier, and N. Stergiopulos. Pulse pressure method and the area method for the estimation of total arterial compliance in dogs: sensitivity to wave reflection intensity. / Ann. Biomed. Eng. 27:480-85, 1999. CrossRef
    31. Stergiopulos, N., J. J. Meister, and N. Westerhof. Simple and accurate way for estimating total and segmental arterial compliance: the pulse pressure method. / Ann. Biomed. Eng. 22:392-97, 1994. CrossRef
    32. Stergiopulos, N., J. J. Meister, and N. Westerhof. Evaluation of methods for estimation of total arterial compliance. / Am. J. Physiol. 268:H1540–H1548, 1995.
    33. Stergiopulos, N., P. Segers, and N. Westerhof. Use of pulse pressure method for estimating total arterial compliance in vivo. / Am. J. Physiol. 276:H424–H428, 1999.
    34. Van Bortel, L. M., S. Laurent, P. Boutouyrie, P. Chowienczyk, J. K. Cruickshank, T. De Backer, J. Filipovsky, S. Huybrechts, F. U. Mattace-Raso, A. D. Protogerou, / et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. / J. Hypertens. 30:445-48, 2012. CrossRef
    35. Verwoert, G. C., S. E. Elias-Smale, D. Rizopoulos, M. T. Koller, E. W. Steyerberg, A. Hofman, M. Kavousi, E. J. Sijbrands, A. P. Hoeks, R. S. Reneman, / et al. Does aortic stiffness improve the prediction of coronary heart disease in elderly? The Rotterdam Study. / J. Hum. Hypertens. 26:28-4, 2012. CrossRef
    36. Vlachopoulos, C., K. Aznaouridis, and C. Stefanadis. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. / J. Am. Coll. Cardiol. 55:1318-327, 2010. CrossRef
    37. Zoungas, S., and R. P. Asmar. Arterial stiffness and cardiovascular outcome. / Clin. Exp. Pharmacol. Physiol. 34:647-51, 2007. CrossRef
  • 作者单位:Orestis Vardoulis (1)
    Theodore G. Papaioannou (1)
    Nikolaos Stergiopulos (1)

    1. Laboratory of Hemodynamics and Cardiovascular Technology, Institute of Bioengineering, Swiss Federal Institute of Technology, Ecole Polytechnique Fédérale de Lausanne (EPFL)/STI/LHTC, BM 5128, Station 17, 1015, Lausanne, Switzerland
  • ISSN:1573-9686
文摘
Total arterial compliance (C T) is a main determinant of cardiac afterload, left ventricular function and arterio-ventricular coupling. C T is physiologically more relevant than regional aortic stiffness. However, direct, in vivo, non-invasive, measurement of C T is not feasible. Several methods for indirect C T estimation require simultaneous recording of aortic flow and pressure waves, limiting C T assessment in clinical practice. In contrast, aortic pulse wave velocity (aPWV) measurement, which is considered as the “gold standard-method to assess arterial stiffness, is noninvasive and relatively easy. Our aim was to establish the relation between aPWV and C T. In total, 1000 different hemodynamic cases were simulated, by altering heart rate, compliance, resistance and geometry using an accurate, distributed, nonlinear, one-dimensional model of the arterial tree. Based on Bramwell–Hill theory, the formula $ C_{\text{T}} = k \cdot {\text{aPWV}}^{ - 2} $ was found to accurately estimate C T from aPWV. Coefficient k was determined both analytically and by fitting C T vs. aPWV data. C T estimation may provide an additional tool for cardiovascular risk (CV) assessment and better management of CV diseases. C T could have greater impact in assessing elderly population or subjects with elevated arterial stiffness, where aPWV seem to have limited prognostic value. Further clinical studies should be performed to validate the formula in vivo.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700