用户名: 密码: 验证码:
The improved performance in the ternary bulk heterojunction solar cells
详细信息    查看全文
  • 作者:DaShan Qin (1)
    GuiFang Li (1)
    Wei Quan (1)
    Lei Chen (1)
    JinSuo Liu (1)
    JiDong Zhang (2)
    DongHang Yan (2)
  • 关键词:bulk heterojunction ; organic solar cells ; ternary blend films ; CBP
  • 刊名:SCIENCE CHINA Physics, Mechanics & Astronomy
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:56
  • 期:3
  • 页码:530-534
  • 全文大小:566KB
  • 参考文献:1. Saraciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 1992, 258: 1474-476 CrossRef
    2. Yu G, Cao J, Hummelen J C, et al. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270: 1789-791 CrossRef
    3. Quan W, Cheng C R, Liu J S, et al. The inverted solar cells with the polymer:fullerene blend film possessing a stratified composition profile. Appl Phys A, 2011, 104: 47-3 CrossRef
    4. Hori T, Shibata T, Kittichungchit V, et al. MoO3 buffer layer effect on photovoltaic properties of interpenetrating heterojunction type organic solar cells. Thin Solid Films, 2009, 518: 522-25 CrossRef
    5. Padinger F, Rittberger R S, Sariciftci N S. Effects of postproduction treatment on plastic solar cells. Adv Funct Mater, 2003, 13: 85-8 CrossRef
    6. Li G, Shrotriya V, Huang J S, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater, 2005, 4: 864-68 CrossRef
    7. Lee J K, Ma W L, Brabec C J, et al. Processing additives for improved efficiency from bulk heterojunction solar cells. J Am Chem Soc, 2008, 130: 3619-623 CrossRef
    8. Quiles M C, Ferenczi T, Agostinelli T, et al. Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends. Nat Mater, 2008, 7: 158-64 CrossRef
    9. Honda S, Nogami T, Ohkita H, et al. Improvement of the light-harvesting efficiency in polymer/fullerene bulk heterojunction solar cells by interfacial dye modification. Appl Mater Interfaces, 2009, 1: 804-10 CrossRef
    10. Honda S, Ohkita H, Benten H, et al. Selective dye loading at the heterojunction in polymer/fullerene solar cells. Adv Energy Mater, 2011, 1: 588-98 CrossRef
    11. Jarzab D, Szendrei K, Yarema M, et al. Charge-separation dynamics in inorganic-organic ternary blends for efficient infrared photodiodes. Adv Funct Mater, 2011, 21: 1988-992 CrossRef
    12. Honda S, Ohkita H, Benten H, et al. Multi-colored dye sensitization of polymer/fullerene bulk heterojunction solar cells. Chem Commun, 2010, 46: 6596-598 CrossRef
    13. Peet J, Tamayo A B, Dang X D, et al. Small molecule sensitizers for near-infrared absorption in polymer bulk heterojunction solar cells. Appl Phys Lett, 2008, 93: 163306 CrossRef
    14. Jeong S, Kwon Y, Choi B, et al. Improved efficiency of bulk heterojunction poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester photovoltaic devices using discotic liquid crystal additives. Appl Phys Lett, 2010, 96: 183305 CrossRef
    15. Li G, Yao Y, Yang H C, et al. “Solvent Annealing-effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv Funct Mater, 2007, 17: 1636-644 CrossRef
    16. Sugiyama K, Kojima T, Fukuda H, et al. ESR and X-ray diffraction studies on thin films of poly-3-hexylthiophene: Molecular orientation and magnetic interactions. Thin Solid Films, 2008, 516: 2691-694 CrossRef
    17. Koppe M, Egelhaaf H J, Dennler G, et al. Near IR sensitization of organic bulk heterojunction solar cells: Towards optimization of the spectral response of organic solar cells. Adv Funct Mater, 2010, 20: 338-46 CrossRef
    18. Qin D S, Quan W, Cheng C R, et al. The optimized morphology of polymer:fullerene bulk heterojunction thin film via reducing pressure. Semicond Sci Technol, 2010, 25: 095003 CrossRef
    19. Sumita M, Sakata K, Asai S, et al. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull, 1991, 25: 265-71 CrossRef
    20. Wu M, Shaw L. Electrical and mechanical behaviors of carbon nanotube-filled polymer blends. J Appl Polym Sci, 2006, 99: 477-88 CrossRef
    21. G?ldel A, Kasaliwal G, P?tschke P. Selective localization and migration of multiwalled carbon nanotubes in blends of polycarbonate and poly(styrene-acrylonitrile). Macromol Rapid Commun, 2009, 30: 423-29 CrossRef
    22. Baudouin A C, Devaux J, Bailly C. Localization of carbon nanotubes at the interface in blends of polyamide and ethylene-acrylate copolymer. Polymer, 2010, 51: 1341-354 CrossRef
  • 作者单位:DaShan Qin (1)
    GuiFang Li (1)
    Wei Quan (1)
    Lei Chen (1)
    JinSuo Liu (1)
    JiDong Zhang (2)
    DongHang Yan (2)

    1. Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, China
    2. State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130023, China
  • ISSN:1869-1927
文摘
The ternary blend films have been fabricated via adding 4,4-N,N-dicarbazole-biphenyl (CBP, a hole transport material widely used in organic light emitting diodes) into the poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT: PCBM). Despite the wide bandgap (3.1 eV) of the CBP, the solar cell utilizing the optimized P3HT:PCBM:CBP blend film showed an increase of 16% in power conversion efficiency and 25% in short-circuit current than the compared standard P3HT:PCBM blend film. This is attributed to the fact that the addition of the CBP could enhance the aggregation of the P3HT chains and thereby reduce the hole-electron recombination at the interface of P3HT and PCBM. We provide a simple, effective way to improve the performance of P3HT based bulk heterojunction solar cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700