用户名: 密码: 验证码:
The ecological roles of bacterial populations in the surface sediments of coastal lagoon environments in Japan as revealed by quantification and qualification of 16S rDNA
详细信息    查看全文
  • 作者:Shun Tsuboi (1) (2)
    Takashi Amemiya (1)
    Koji Seto (3)
    Kiminori Itoh (1)
    Narasimmalu Rajendran (1) (3) (4)
  • 关键词:Coastal lagoon environments ; Lakes Shinji and Nakaumi ; Surface sediments ; Bacterial 16S rDNA ; Stable carbon and nitrogen isotope ratio ; Ecological roles of sedimentary bacteria
  • 刊名:World Journal of Microbiology and Biotechnology
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:29
  • 期:5
  • 页码:759-774
  • 全文大小:815KB
  • 参考文献:1. Akoumianaki I, Nomaki H, Pachiadaki M, Kormas KA, Kitazato H, Tokuyama (2012) Low bacterial diversity and high labile organic matter concentrations in the sediments of the Medee deep-sea hypersaline anoxic basin. Microbes Environ 27:504-08
    2. Alongi DM (1988) Bacterial productivity and microbial biomass in tropical mangrove sediments. Microb Ecol 15:59-9 CrossRef
    3. Alongi DM (1994) The role of bacteria in nutrient recycling in tropical mangrove and other coastal benthic ecosystems. Hydrobiol 285:19-2 CrossRef
    4. Armed F, Bibi MH, Seto K, Ishiga H, Fukushima T, Roser BP (2009) Abundances, distribution, and sources of trace metals in Nakaumi-Honjo coastal lagoon sediments, Japan. Environ Monit Assess 167:473-91
    5. Armed F, Bibi MH, Fukushima T, Seto K, Ishiga H (2010) Recent sedimentary environment of coastal lagoon in southwestern Japan: evidence from major and trace elements. Environ Monit Assess 173:167-80
    6. Arnosti C, J?rgensen BB, Sagemann J, Thamdrup B (1998) Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen consumption, and sulfate reduction. Mar Ecol Prog Ser 165:59-0 CrossRef
    7. Barnes RSK (1994) A critical appraisal of the application of Guelorget and Perthuisot’s concepts of the paralic ecosystem and confinement to macrotidal Europe. Estuar Coast Shelf Sci 38:41-8 CrossRef
    8. Billen G (1982) Modelling the processes of organic matter degradation and nutrients recycling in sedimentary systems. In: Nedwell DB, Brown CM (eds) Sediment microbiology. Academic Press, New York, USA, pp 15-2
    9. Borch NH, Kirchman DL (1999) Protection of protein from bacterial degradation by submicron particles. Aquat Microb Ecol 16:265-72 CrossRef
    10. Bouillon S, Moens T, Koedam N, Dahdouh-Guebas F, Baeyens W, Dehairs F (2004) Variability in the origin of carbon substrates for bacterial communities in mangrove sediments. FEMS Microbiol Ecol 49:171-79 CrossRef
    11. Bourgeois S, Pruski AM, Sun MY, Buscail R, Lantoine F, Vétion G, Rivière B, Charles F (2011) Distribution and lability of land-derived organic matter in the surface sediments of the Rh?ne prodelta and the adjacent shelf (Mediterranean sea, France): a multi proxy study. Biogeosci Discuss 8:3353-402 CrossRef
    12. Boutton TW (1991) Stable carbon isotope ratios of natural materials: II, Atmospheric, terrestrial, marine, and freshwater environments. In: Coleman DC, Fry B (eds) Carbon isotopes techniques. Academic Press, SanDiego, pp 173-85 CrossRef
    13. Bowen JL, Crump BC, Deegan LA, Hobbie JE (2009) Salt marsh sediment bacteria: their distribution and response to external nutrient inputs. ISME J 3:924-34 CrossRef
    14. Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T (2011) Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci USA 108:14288-4293 CrossRef
    15. Cho BC, Azam F (1988) Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332:441-43 CrossRef
    16. Cullen DW, Hirsch PR (1998) Simple and rapid method for direct extraction of microbial DNA from soil for PCR. Soil Biol Biochem 30:983-93 CrossRef
    17. Dale NG (1974) Bacteria in intertidal sediments: factors related to their distribution. Limnol Oceanogr 19:509-18 CrossRef
    18. Dang H, Li J, Chen M, Li T, Zeng Z, Yin X (2009) Fine-scale vertical distribution of bacteria in the East Pacific deep-sea sediments determined via 16S rRNA gene T-RFLP and clone library analyses. World J Microbiol Biotechnol 25:179-88 CrossRef
    19. Danovaro R, Pusceddu A (2007) Biodiversity and ecosystem functioning in coastal lagoons: does microbial diversity play any role ? Estuar Coast Shelf Sci 75:4-2 CrossRef
    20. Danovaro R, Marrale D, Della Croce N, Dell’Anno A, Fabiano M (1998) Heterotrophic nanoflagellates, bacteria and labile organic compounds in continental shelf and deep-sea sediments of the Eastern Mediterranean. Microb Ecol 35:244-55 CrossRef
    21. Dell’Anno A, Bompadre S, Danovaro R (2002) Quantification, base composition, and fate of extracellular DNA in marine sediments. Limnol Oceanogr 47:899-05 CrossRef
    22. Deming JW, Barros JA (1993) The early diagenesis of organic matter: bacterial activity. In: Engel MH, Macko SA (eds) Organic geochemistry: principles and applications. Plenum Press, New York, pp 119-44 CrossRef
    23. Divya B, Parvathi A, Bharathi PAL, Nair S (2011) 16S rRNA-based bacterial diversity in the organic-rich sediments underlying oxygen-deficient waters of the eastern Arabian Sea. World J Microbiol Biotechnol 27:2821-833 CrossRef
    24. Fabiano M, Danovaro R (1998) Enzymatic activity, bacterial distribution, and organic matter composition in sediments of the Ross Sea (Antarctica). Appl Environ Microbiol 64:3838-845
    25. Fenchel T, Blackburn TH (1979) Bacteria and mineral cycling. Academic Press, London
    26. Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ (2010) Temperature-controlled organic carbon mineralization in lake sediments. Nature 466:478-82 CrossRef
    27. Hartnett HE, Keil RG, Hedges JI, Devol AH (1998) Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391:572-75 CrossRef
    28. Harvey HR, Tuttle JH, Bell JT (1995) Kinetics of phytoplankton decay during simulated sedimentation: changes in biochemical composition and microbial activity under oxic and anoxic conditions. Geochim Cosmochim Acta 59:3367-377 CrossRef
    29. Hashitani H, Okumura M, Fujinaga K, Kondo K, Seike Y (1992) Effect of meteorological factors on the water quality of Lake Shinji and Lake Nakaumi: part 2. Studies San’in Region 8:69-6 (in Japanese, with English Abstract)
    30. Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49:81-15 CrossRef
    31. Huang S, Chen C, Wu Y, Wu Q, Zhang R (2011) Characterization of depth-related bacterial communities and their relationships with the environmental factors in the river sediments. World J Microbiol Biotechnol 27:2655-664 CrossRef
    32. Ichikawa T, Aizaki M, Takeshita M (2007) Numerical study on amelioration of water quality in Lakes Shinji and Nakaumi: a coastal brackish lagoon system. Limnol 8:281-94 CrossRef
    33. Ishitobi Y, Hiratsuka J, Kuwabara H, Yamamuro M (2000) Comparison of fish fauna in three areas of adjacent eutrophic estuarine lagoons with different salinities. J Mar Sys 26:171-81 CrossRef
    34. Kabir S, Rajendran N, Amemiya T, Itoh K (2003) Real-time quantitative PCR assay on bacterial DNA: in a model soil system and environmental samples. J Gen Appl Microbiol 49:101-09 CrossRef
    35. Kang KS, Itoh K, Murabayashi M, Nakanishi J (2001) Direct DNA extraction from soil and DNA purification: comparison of the different methods. J Jpn Soc Water Envir 24:175-79 (in Japanese) CrossRef
    36. Keil RG, Montlu?on DB, Prahl FG, Hedges JI (1994) Sorptive preservation of labile organic matter in marine sediments. Nature 370:549-52 CrossRef
    37. Kemp PF (1990) The fate of benthic bacterial production. Review Aquat Sci 2:109-24
    38. Klappenbach JL, Saxman PR, Cole JR, Schmidt TM (2001) rrdb: the ribosomal RNA operon copy number database. Nucleic Acids Res 29:181-84 CrossRef
    39. Knoppers B (1994) Aquatic primary production in coastal lagoons. In: Kjerfve B (ed) Coastal lagoon processes. Elsevier Science Publishers, Amsterdam, pp 243-86 CrossRef
    40. Kormas KA (2011) Interpreting diversity of Proteobacteria based on 16S rRNA gene copy number. In: Sezenna ML (ed) Proteobacteria: phylogeny, metabolic diversity and ecological effects. Nova Publishers, Hauppauge, New York, pp 73-9
    41. Kormas KA, Papaspyrou S (2004) Growth of marine bacterioplankton on river and sea water dissolved organic carbon in a Mediterranean coastal system. Cah Biol Mar 45:55-4
    42. Leloup J, Loy A, Knab NJ, Borowski C, Wagner M, J?rgensen BB (2007) Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environ Microbiol 9:131-42 CrossRef
    43. Manini E, Fiordelmondo C, Gambi C, Puscddu A, Danovaro R (2003) Benthic microbial loop functioning in coastal lagoons: a comparative approach. Oceanol Acta 26:27-8 CrossRef
    44. Mayer LM (1989) Extracellular proteolytic enzyme activity in sediments of an intertidal mudflat. Limnol Oceanogr 34:973-81 CrossRef
    45. Middelburg JJ, Nieuwenhuize J (1998) Carbon and nitrogen isotopes in suspended matter and sediments from the Schelde Estuary. Mar Chem 60:217-25 CrossRef
    46. Müller AK, Westergaard K, Christensen S, S?rensen SJ (2001) The effect of long-term mercury pollution on the soil microbial community. FEMS Microbiol Ecol 36:11-9 CrossRef
    47. Muyzer G, de waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695-00
    48. Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH (2007) Vegan: community ecology package. R package version 1.8-8
    49. Owens NJP (1987) Natural variations in 15?N in the marine environment. Adv Mar Biol 24:389-51 CrossRef
    50. Pastor L, Deflandre B, Viollier E, Cathalot C, Metzger E, Rabouille C, Escoubeyrou K, Lloret E, Pruski AM, Vétion G, Desmalades M, Buscail R, Grémare A (2011) Influence of the organic matter composition on benthic oxygen demand in the Rh?ne River prodelta (NW Mediterranean Sea). Cont Shelf Res 31:1008-019 CrossRef
    51. Payne JW (1980) Transport and utilization of peptides by bacteria. In: Payne JW (ed) Microorganisms and nitrogen sources: transport and utilization of amino acids, peptides, proteins, and related substrates. Wiley, New York, pp 212-56
    52. Pedersen TF (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis—a comment. Mar Chem 49:117-19 CrossRef
    53. Pei AY, Oberdorf WE, Nossa CW et al (2010) Diversity of 16S rRNA genes within individual prokaryotic genomes. Appl Environ Microbiol 76:3886-897 CrossRef
    54. Petersen DG, Blazewicz SJ, Firestone M, Herman DJ, Turetsky M, Waldrop M (2012) Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ Microbiol 14:993-008 CrossRef
    55. Powell SM, Bowman JP, Snape I, Stark JS (2003) Microbial community variation in pristine and polluted nearshore Antarctic sediments. FEMS Microbiol Ecol 45:135-45 CrossRef
    56. Pusceddu A, Sarà G, Armeni M, Fabiano M, Mazzola A (1999) Seasonal and spatial changes in the sediment organic matter of a semienclosed marine system (W-Mediterranean Sea). Hydrobiol 397:59-0 CrossRef
    57. Rajendran N, Matsuda O, Urushigawa Y, Simidu U (1994) Characterization of microbial community structure in the surface sediment of Osaka Bay, Japan, by phospholipid fatty acid analysis. Appl Environ Microbiol 60:248-57
    58. Rublee PA (1982) Seasonal distribution of bacteria in salt marsh sediments in North Carolina. Estuar Coast Shelf Sci 15:67-4 CrossRef
    59. Schippers A, Neretin LN, Kallmeyer J, Ferdelman TG, Cragg BA, Parkes RJ, J?rgensen BB (2005) Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433:861-64 CrossRef
    60. Schwarz JI, Eckert W, Conrad R (2007) Community structure of Archaea and Bacteria in a profundal lake sediment Lake Kinneret (Israel). Syst Appl Microbiol 30:239-54 CrossRef
    61. Schweitzer B, Huber I, Amann R, Ludwig W, Simon M (2001) α- and β- proteobacteria control the consumption and release of amino acids on lake snow aggregates. Appl Environ Microbiol 67:632-45 CrossRef
    62. Schwinghamer P, Tan FC, Gordon DC Jr (1983) Stable carbon isotope studies on the Pecks cove mudflat ecosystem in the Cumberland Basin, Bay of Fundy. Can J Fish Aquat Sci 40(suppl 1):262-72 CrossRef
    63. Seto K, Nakayama D, Tanaka H, Yamaguchi K (2000) Cyanobacterial water—bloom in Lake Shinji and its geochemical features. LAGUNA 7:61-9 (in Japanese, with English Abstract)
    64. Somura H, Takeda I, Arnold JG, Mori Y, Jeong J, Kannan N, Hoffman D (2012) Impact of suspended sediment and nutrient loading from land uses against water quality in the Hii River basin, Japan. J Hydrol 450-51:25-5 CrossRef
    65. Suess E (1973) Interaction of organic compounds with calcium carbonate-II. Organo-carbonate association in recent sediments. Geochim Cosmochim Acta 37:2435-447 CrossRef
    66. Thornton SF, McManus J (1994) Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuar Coast Shelf Sci 38:219-33 CrossRef
    67. Viaroli P, Naldi M, Christian RR, Fumagalli I (1993) The role of macroalgae and detritus in nutrient cycles in a shallow-water dystrophic lagoon. Verh Int Verein Limnol 25:1048-051
    68. Vizzini S, Savona B, Do Chi T, Mazzola A (2005) Spatial variability of stable carbon and nitrogen isotope ratios in a Mediterranean coastal lagoon. Hydrobiol 550:73-2 CrossRef
    69. Waser NAD, Harrison WG, Head EJH, Nielsen B, Lutz VA, Calvert SE (2000) Geographic variations in the nitrogen isotope composition of surface particulate nitrogen and new production across the North Atlantic Ocean. Deep-Sea Res I 47:1207-226 CrossRef
    70. Wentworth CK (1922) A scale of grade and class terms for classic sediments. J Geol 30:377-92 CrossRef
    71. Yamamuro M (2000) Chemical tracers of sediment organic matter origins in two coastal lagoons. J Mar Sys 26:127-34 CrossRef
    72. Zeng J, Yang L, Li J, Liang Y, Xiao L, Jiang L, Zhao D (2009) Vertical distribution of bacterial community structure in the sediments of two eutrophic lakes revealed by denaturing gradient gel electrophoresis (DGGE) and multivariate analysis techniques. World J Microbiol Biotechnol 25:225-33 CrossRef
  • 作者单位:Shun Tsuboi (1) (2)
    Takashi Amemiya (1)
    Koji Seto (3)
    Kiminori Itoh (1)
    Narasimmalu Rajendran (1) (3) (4)

    1. Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, 240-8501, Japan
    2. National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
    3. Research Center for Coastal Lagoon Environments, Shimane University, Matsue, 690-8504, Japan
    4. School of Bio-sciences and Technology, VIT University, Vellore, 632014, India
  • ISSN:1573-0972
文摘
Based on quantification and qualification of bacterial 16S rDNA, we verified the bacterial ecological characteristics of surface sediments of Lakes Shinji and Nakaumi, which are representative of coastal lagoons in Japan. Quantification and qualification of the 16S rDNA sequences was carried out using real time polymerase chain reaction and polymerase chain reaction denaturing gradient gel electrophoresis and non-metric multidimensional scaling, respectively. The results revealed that the copy number per gram of sediment ranged from 8.33?×?108 (Lake Nakaumi) to 1.69?×?1011 (Honjo area), suggesting that bacterial carbon contributed only 0.05-.64?% of the total carbon content in the samples. Compared with other aquatic environments, these results indicate that sedimentary bacteria are not likely to be important transporters of nutrients to higher trophic levels, or to act as carbon sinks in the lagoons. The bacterial compositions of Lake Shinji and Lake Nakaumi and the Honjo area were primarily influenced by sediment grain sizes and salinity, respectively. Statistical comparisons of the environmental properties suggested that the areas that were oxygen-abundant (Lake Shinji) and at a higher temperature (Honjo area) presented efficient organic matter degradation. The 16S rDNA copy number per gram of carbon and nitrogen showed the same tendency. Consequently, the primary roles of bacteria were degradation and preservation of organic materials, and this was affected by oxygen and temperature. These roles were supported by the bacterial diversity rather than the differences in the community compositions of the sedimentary bacteria in these coastal lagoons.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700