用户名: 密码: 验证码:
Genome-wide association study in a Chinese population identifies a susceptibility locus for type 2 diabetes at 7q32 near PAX4
详细信息    查看全文
  • 作者:R. C. W. Ma (1) (2) (3)
    C. Hu (4) (5)
    C. H. Tam (1)
    R. Zhang (4)
    P. Kwan (1)
    T. F. Leung (6)
    G. N. Thomas (7)
    M. J. Go (8)
    K. Hara (10) (9)
    X. Sim (11) (12)
    J. S. K. Ho (1)
    C. Wang (4)
    H. Li (13)
    L. Lu (13)
    Y. Wang (13)
    J. W. Li (14)
    Y. Wang (1)
    V. K. L. Lam (1)
    J. Wang (4)
    W. Yu (4)
    Y. J. Kim (8)
    D. P. Ng (15)
    H. Fujita (9)
    K. Panoutsopoulou (16)
    A. G. Day-Williams (16)
    H. M. Lee (1)
    A. C. W. Ng (1)
    Y-J. Fang (17)
    A. P. S. Kong (1)
    F. Jiang (4)
    X. Ma (4)
    X. Hou (4)
    S. Tang (4)
    J. Lu (4)
    T. Yamauchi (9)
    S. K. W. Tsui (18)
    J. Woo (1)
    P. C. Leung (19)
    X. Zhang (5)
    N. L. S. Tang (20)
    H. Y. Sy (6)
    J. Liu (21)
    T. Y. Wong (22) (23) (24)
    J. Y. Lee (8)
    S. Maeda (25)
    G. Xu (1)
    S. S. Cherny (26)
    T. F. Chan (14)
    M. C. Y. Ng (27)
    K. Xiang (4)
    A. P. Morris (28)
    S. Keildson (28)
    R. Hu (29)
    L. Ji (30)
    X. Lin (13)
    Y. S. Cho (31)
    T. Kadowaki (9)
    E. S. Tai (32) (33)
    E. Zeggini (16)
    M. I. McCarthy (28) (34)
    K. L. Hon (6)
    L. Baum (35)
    B. Tomlinson (1)
    W. Y. So (1)
    Y. Bao (4)
    J. C. N. Chan (1) (2) (3)
    W. Jia (4)
  • 关键词:Chinese ; Diabetes ; East Asians ; Genetics ; Genome ; wide association study
  • 刊名:Diabetologia
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:56
  • 期:6
  • 页码:1291-1305
  • 全文大小:379KB
  • 参考文献:1. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4-4 CrossRef
    2. Chan JC, Malik V, Jia W et al (2009) Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 301:2129-140 CrossRef
    3. Ramachandran A, Ma RC, Snehalatha C (2010) Diabetes in Asia. Lancet 375:408-18 CrossRef
    4. Yang W, Lu J, Weng J et al (2010) Prevalence of diabetes among men and women in China. N Engl J Med 362:1090-101 CrossRef
    5. Zeggini E, Scott LJ, Saxena R et al (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40:638-45 CrossRef
    6. Voight BF, Scott LJ, Steinthorsdottir V et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579-89 CrossRef
    7. Hu C, Wang C, Zhang R et al (2009) Variations in KCNQ1 are associated with type 2 diabetes and beta cell function in a Chinese population. Diabetologia 52:1322-325 CrossRef
    8. Hu C, Zhang R, Wang C et al (2010) Variants from GIPR, TCF7L2, DGKB, MADD, CRY2, GLIS3, PROX1, SLC30A8 and IGF1 are associated with glucose metabolism in the Chinese. PLoS One 5:e15542 CrossRef
    9. Hu C, Zhang R, Wang C et al (2009) PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population. PLoS One 4:e7643 CrossRef
    10. Ng MC, Park KS, Oh B et al (2008) Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians. Diabetes 57:2226-233 CrossRef
    11. Tam CH, Ho JS, Wang Y et al (2010) Common polymorphisms in MTNR1B, G6PC2 and GCK are associated with increased fasting plasma glucose and impaired beta-cell function in Chinese subjects. PLoS One 5:e11428 CrossRef
    12. Yasuda K, Miyake K, Horikawa Y et al (2008) Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 40:1092-097 CrossRef
    13. Unoki H, Takahashi A, Kawaguchi T et al (2008) SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet 40:1098-102 CrossRef
    14. Kooner JS, Saleheen D, Sim X et al (2011) Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet 43:984-89 CrossRef
    15. Cho YS, Chen CH, Hu C et al (2011) Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet 44:67-2 CrossRef
    16. Cui B, Zhu X, Xu M et al (2010) A genome-wide association study confirms previously reported loci for type 2 diabetes in Han Chinese. PLoS One 6:e22353 CrossRef
    17. Tsai FJ, Yang CF, Chen CC et al (2010) A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet 6:e1000847 CrossRef
    18. Shu XO, Long J, Cai Q et al (2010) Identification of new genetic risk variants for type 2 diabetes. PLoS Genet 6:e1001127 CrossRef
    19. Cho YS, Go MJ, Kim YJ et al (2009) A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 41:527-34 CrossRef
    20. Tan JT, Ng DP, Nurbaya S et al (2010) Polymorphisms identified through genome-wide association studies and their associations with type 2 diabetes in Chinese, Malays, and Asian-Indians in Singapore. J Clin Endocrinol Metab 95:390-97 CrossRef
    21. Li H, Gan W, Lu L et al (2013) A genome-wide association study identifies GRK5 and RASGRP1 as type 2 diabetes loci in Chinese Hans. Diabetes 62:291-98
    22. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet 81:559-75 CrossRef
    23. Li Y, Willer C, Sanna S, Abecasis G (2009) Genotype imputation. Annu Rev Genom Hum Genet 10:387-06 CrossRef
    24. Magi R, Morris AP (2010) GWAMA: software for genome-wide association meta-analysis. BMC Bioinforma 11:288 CrossRef
    25. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177-88 CrossRef
    26. Gaulton KJ, Nammo T, Pasquali L et al (2010) A map of open chromatin in human pancreatic islets. Nat Genet 42:255-59 CrossRef
    27. Stitzel ML, Sethupathy P, Pearson DS et al (2010) Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci. Cell Metab 12:443-55 CrossRef
    28. Dimas AS, Deutsch S, Stranger BE et al (2009) Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325:1246-250 CrossRef
    29. Nica AC, Parts L, Glass D et al (2011) The architecture of gene regulatory variation across multiple human tissues: the MuTHER study. PLoS Genet 7:e1002003 CrossRef
    30. Kim YA, Wuchty S, Przytycka TM (2011) Identifying causal genes and dysregulated pathways in complex diseases. PLoS Comput Biol 7:e1001095 CrossRef
    31. Barrenas F, Chavali S, Alves AC et al (2012) Highly interconnected genes in disease-specific networks are enriched for disease-associated polymorphisms. Genome Biol 13:R46 CrossRef
    32. Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM (2011) Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res 21:1109-121 CrossRef
    33. Ong RT, Teo YY (2010) varLD: a program for quantifying variation in linkage disequilibrium patterns between populations. Bioinformatics 26(9):1269-270 CrossRef
    34. Brun T, Franklin I, St-Onge L et al (2004) The diabetes-linked transcription factor PAX4 promotes {beta}-cell proliferation and survival in rat and human islets. J Cell Biol 167:1123-135 CrossRef
    35. Li Y, Nagai H, Ohno T et al (2006) Aberrant DNA demethylation in promoter region and aberrant expression of mRNA of PAX4 gene in hematologic malignancies. Leuk Res 30:1547-553 CrossRef
    36. Habener JF, Kemp DM, Thomas MK (2005) Minireview: transcriptional regulation in pancreatic development. Endocrinology 146:1025-034 CrossRef
    37. Wang J, Elghazi L, Parker SE et al (2004) The concerted activities of Pax4 and Nkx2.2 are essential to initiate pancreatic beta-cell differentiation. Dev Biol 266:178-89 CrossRef
    38. Mauvais-Jarvis F, Smith SB, Le May C et al (2004) PAX4 gene variations predispose to ketosis-prone diabetes. Hum Mol Genet 13:3151-159 CrossRef
    39. Shimajiri Y, Sanke T, Furuta H et al (2001) A missense mutation of Pax4 gene (R121W) is associated with type 2 diabetes in Japanese. Diabetes 50:2864-869 CrossRef
    40. Tokuyama Y, Matsui K, Ishizuka T, Egashira T, Kanatsuka A (2006) The Arg121Trp variant in PAX4 gene is associated with beta-cell dysfunction in Japanese subjects with type 2 diabetes mellitus. Metabolism 55:213-16 CrossRef
    41. Plengvidhya N, Kooptiwut S, Songtawee N et al (2007) PAX4 mutations in Thais with maturity onset diabetes of the young. J Clin Endocrinol Metab 92:2821-826 CrossRef
    42. McCarthy MI (2010) Genomics, type 2 diabetes, and obesity. N Engl J Med 363:2339-350 CrossRef
    43. Silander K, Mohlke KL, Scott LJ et al (2004) Genetic variation near the hepatocyte nuclear factor-4 alpha gene predicts susceptibility to type 2 diabetes. Diabetes 53:1141-149 CrossRef
    44. Bonnefond A, Clement N, Fawcett K et al (2012) Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet 44:297-01 CrossRef
    45. Luke MR, Houghton F, Perugini MA, Gleeson PA (2005) The trans-Golgi network GRIP-domain proteins form alpha-helical homodimers. Biochem J 388:835-41 CrossRef
    46. Lebeda RA, Haun RS (1999) Cloning and characterization of the human ADP-ribosylation factor 4 gene. Gene 237:209-14 CrossRef
    47. Song F, Srinivasan M, Aalinkeel R, Patel MS (2001) Use of a cDNA array for the identification of genes induced in islets of suckling rats by a high-carbohydrate nutritional intervention. Diabetes 50:2053-060 CrossRef
    48. Broadhurst MK, Lee RS, Hawkins S, Wheeler TT (2005) The p100 EBNA-2 coactivator: a highly conserved protein found in a range of exocrine and endocrine cells and tissues in cattle. Biochim Biophys Acta 1681:126-33 CrossRef
    49. Dupont S, Vionnet N, Chevre JC et al (1999) No evidence of linkage or diabetes-associated mutations in the transcription factors BETA2/NEUROD1 and PAX4 in type II diabetes in France. Diabetologia 42:480-84 CrossRef
    50. Dusatkova P, Vesela K, Pruhova S, Lebl J, Cinek O (2010) Lack of PAX4 mutations in 53 Czech MODYX families. Diabet Med 27:1459-460 CrossRef
  • 作者单位:R. C. W. Ma (1) (2) (3)
    C. Hu (4) (5)
    C. H. Tam (1)
    R. Zhang (4)
    P. Kwan (1)
    T. F. Leung (6)
    G. N. Thomas (7)
    M. J. Go (8)
    K. Hara (10) (9)
    X. Sim (11) (12)
    J. S. K. Ho (1)
    C. Wang (4)
    H. Li (13)
    L. Lu (13)
    Y. Wang (13)
    J. W. Li (14)
    Y. Wang (1)
    V. K. L. Lam (1)
    J. Wang (4)
    W. Yu (4)
    Y. J. Kim (8)
    D. P. Ng (15)
    H. Fujita (9)
    K. Panoutsopoulou (16)
    A. G. Day-Williams (16)
    H. M. Lee (1)
    A. C. W. Ng (1)
    Y-J. Fang (17)
    A. P. S. Kong (1)
    F. Jiang (4)
    X. Ma (4)
    X. Hou (4)
    S. Tang (4)
    J. Lu (4)
    T. Yamauchi (9)
    S. K. W. Tsui (18)
    J. Woo (1)
    P. C. Leung (19)
    X. Zhang (5)
    N. L. S. Tang (20)
    H. Y. Sy (6)
    J. Liu (21)
    T. Y. Wong (22) (23) (24)
    J. Y. Lee (8)
    S. Maeda (25)
    G. Xu (1)
    S. S. Cherny (26)
    T. F. Chan (14)
    M. C. Y. Ng (27)
    K. Xiang (4)
    A. P. Morris (28)
    S. Keildson (28)
    R. Hu (29)
    L. Ji (30)
    X. Lin (13)
    Y. S. Cho (31)
    T. Kadowaki (9)
    E. S. Tai (32) (33)
    E. Zeggini (16)
    M. I. McCarthy (28) (34)
    K. L. Hon (6)
    L. Baum (35)
    B. Tomlinson (1)
    W. Y. So (1)
    Y. Bao (4)
    J. C. N. Chan (1) (2) (3)
    W. Jia (4)

    1. Department of Medicine and Therapeutics, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, SAR, People’s Republic of China
    2. Hong Kong Institute of Diabetes and Obesity, Chinese University of Hong Kong, Hong Kong, SAR, People’s Republic of China
    3. Li Ka Shing Institute of Life Sciences, Chinese University of Hong Kong, Hong Kong, SAR, People’s Republic of China
    4. Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233, People’s Republic of China
    5. Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai, People’s Republic of China
    6. Department of Paediatrics, Chinese University of Hong Kong, Hong Kong, People’s Republic of China
    7. Department of Public Health, Epidemiology and Biostatistics, University of Birmingham, Birmingham, UK
    8. Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Gangoe-myeon, Yeonje-ri, Cheongwon-gun, Chungcheongbuk-do, Republic of Korea
    10. Department of Integrated Molecular Science on Metabolic Diseases, University of Tokyo Hospital, Tokyo, Japan
    9. Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
    11. Centre for Molecular Epidemiology, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Republic of Singapore
    12. Center for Statistical Genetics and Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
    13. Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, People’s Republic of China
    14. School of Life Sciences, Chinese University of Hong Kong, Hong Kong, SAR, People’s Republic of China
    15. Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Republic of Singapore
    16. Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
    17. Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
    18. School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, People’s Republic of China
    19. Department of Orthopaedics, Chinese University of Hong Kong, Hong Kong, SAR, People’s Republic of China
    20. Department of Chemical Pathology, Chinese University of Hong Kong, Hong Kong, SAR, People’s Republic of China
    21. Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Republic of Singapore
    22. Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore
    23. Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
    24. Centre for Eye Research Australia, University of Melbourne, East Melbourne, VIC, Australia
    25. Laboratory for Endocrinology and Metabolism, RIKEN Center for Genomic Medicine, Yokohama, Japan
    26. Department of Psychiatry and State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, SAR, People’s Republic of China
    27. Center for Genomics and Personalized Medicine Research, Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
    28. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
    29. Institute of Endocrinology and Diabetology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
    30. Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, People’s Republic of China
    31. Department of Biomedical Science, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
    32. Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
    33. Graduate Medical School, Duke-National University of Singapore, Singapore, Republic of Singapore
    34. Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
    35. School of Pharmacy, Chinese University of Hong Kong, Hong Kong, SAR, People’s Republic of China
  • ISSN:1432-0428
文摘
Aims/hypothesis Most genetic variants identified for type 2 diabetes have been discovered in European populations. We performed genome-wide association studies (GWAS) in a Chinese population with the aim of identifying novel variants for type 2 diabetes in Asians. Methods We performed a meta-analysis of three GWAS comprising 684 patients with type 2 diabetes and 955 controls of Southern Han Chinese descent. We followed up the top signals in two independent Southern Han Chinese cohorts (totalling 10,383 cases and 6,974 controls), and performed in silico replication in multiple populations. Results We identified CDKN2A/B and four novel type 2 diabetes association signals with p-lt;-?×-0? from the meta-analysis. Thirteen variants within these four loci were followed up in two independent Chinese cohorts, and rs10229583 at 7q32 was found to be associated with type 2 diabetes in a combined analysis of 11,067 cases and 7,929 controls (p meta--.6?×-0?; OR [95% CI] 1.18 [1.11, 1.25]). In silico replication revealed consistent associations across multiethnic groups, including five East Asian populations (p meta--.3?×-0?0) and a population of European descent (p--.6?×-0?). The rs10229583 risk variant was associated with elevated fasting plasma glucose, impaired beta cell function in controls, and an earlier age at diagnosis for the cases. The novel variant lies within an islet-selective cluster of open regulatory elements. There was significant heterogeneity of effect between Han Chinese and individuals of European descent, Malaysians and Indians. Conclusions/interpretation Our study identifies rs10229583 near PAX4 as a novel locus for type 2 diabetes in Chinese and other populations and provides new insights into the pathogenesis of type 2 diabetes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700