用户名: 密码: 验证码:
A Highly Sensitive Enzyme Catalytic Method for the Detection of Ethanol Based on Resonance Scattering Effect of Gold Particles
详细信息    查看全文
  • 作者:Yanghe Luo (1) (2)
    Pengfei Wang (1)
    Tingsheng Li (1)
    Jianniao Tian (1)
    Aihui Liang (1)
    Zhiliang Jiang (1)
  • 关键词:Ethanol ; Gold particle ; Enzyme catalytic resonance scattering assay
  • 刊名:Plasmonics
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:8
  • 期:2
  • 页码:307-312
  • 全文大小:271KB
  • 参考文献:1. Thongchul N, Navankasattusas S, Yang ST (2010) Production of lactic acid and ethanol by / Rhizopus oryzae integrated with cassava pulp hydrolysis. Bioprocess Biosyst Eng 33:407-16 CrossRef
    2. Kim I, Han OH, Chae SA, Paik Y, Kwon SH, Lee KS, Sung YE, Kim HS (2011) Catalytic reactions in direct ethanol fuel cells. Angew Chem Int Ed 50:2270-274
    3. Atsushi H, Atsushi Y, Mikihito K, Ni K, Takaharu K (2005) Simple and rapid determination of metabolite content in plant cell culture medium using an FT-IR/ATR method. Bioprocess Biosyst Eng 27:115-23 CrossRef
    4. Tangerman A (1997) Highly sensitive gas chromatographic analysis of ethanol in whole blood, serum, urine, and fecal supernatants by the direct injection method. Clin Chem 43:1003-009
    5. Yarita T, Nakajima R, Otsuka S (2002) Determination of ethanol in alcoholic beverages by high-performance liquid chromatography-flameionization detection using pure water as mobile phase. J Chromatograph A 976:387-91 CrossRef
    6. Bernero M, Bare RE, Haith CE, Grossman MJ (2004) Detection of alkanes, alcohols, and aldehydes using bioluminescence. Biotechnol Bioeng 87:170-77 CrossRef
    7. Deng L, Zhang LH, Shang L, Guo SJ, Wen D, Wang FA, Dong SJ (2009) Electrochemiluminescence detection of NADH and ethanol based on partial sulfonation of sol–gel network with gold nanoparticles. Biosens Bioelectron 24:2273-276 CrossRef
    8. Ye Q, Xu QF, Yu YA, Qu RH, Fang ZJ (2009) Rapid and quantitative detection of ethanol proportion in ethanol–gasoline mixtures by Raman spectroscopy. Opt Commun 282:3785-788 CrossRef
    9. Rangel AOSS, Toth IV (2000) Enzymatic determination of ethanol and glycerol by flow injection parallel multi-site detection. Anal Chim Acta 416:205-10 CrossRef
    10. Lee CA, Tsai YC (2009) Preparation of multiwalled carbon nanotube-chitosan-alcohol dehydrogenase nanobiocomposite for amperometric detection of ethanol. Sens Actuators B 138:518-23 CrossRef
    11. Gallignani M, Ayala C, Brunetto MR, Burguera JL, Burguera M (2005) A simple strategy for determining ethanol in all types of alcoholic beverages based on its on-line liquid–liquid extraction with chloroform, using a flow injection system and Fourier transform infrared spectrometric detection in the mid-IR. Talanta 68:470-79 CrossRef
    12. Garrigues JM, Perez-Ponce A, Garrigues S (1997) Direct determination of ethanol in liquid samples by means of vapor phase–fourier ransform infrared spectrometry. Vib Spectrosc 15:219-81 CrossRef
    13. Pinalli R, Nachtigall FF, Ugozzoli F, Dalcanale E (1999) Supramolecular sensors for the detection of alcohols. Angew Chem Int Ed 38:2377-380 CrossRef
    14. Shkotova LV, Soldatkin AP, Gonchar MV, SchuhmannW DSV (2006) Amperometric biosensor for ethanol detection based on alcohol oxidase immobilised within electrochemically deposited Resydrol film. Mater Sci Eng: C 26:411-14 CrossRef
    15. Ajay AK, Srivastava ND (2007) Microtubular conductometric biosensor for ethanol detection. Biosens Bioelectron 23:281-84 CrossRef
    16. Liu WH, Yang W, Wu XQ, Lin ZX (2007) Direct determination of ethanol by laser Raman spectra with internal standard method. Chin J Anal Chem 35:416-18
    17. Pasternack RF, Collings P (1995) Resonance light scattering: a new technique for studying chromosphere aggregation. Science 269:935-39 CrossRef
    18. Luo HQ, Li NB, Liu SP (2006) Resonance rayleigh scattering study of interaction of hyaluronic acid with ethyl violet dye and its analytical application. Biosens Bioelectron 21:1186-194 CrossRef
    19. Du BA, Li ZP, Liu CH (2006) One-step homogeneous detection of DNA hybridization with gold nanoparticle probes by using a linear light-scattering technique. Angew Chem Int Ed 45:8022-025 CrossRef
    20. Jiang ZL, Sun SJ, Liang AH, Huang WX, Qin AM (2006) Gold-labeled nanoparticle-based immunoresonance scattering spectral assay for trace apolipoprotein AI and apolipoprotein B. Clin Chem 52:1389-394 CrossRef
    21. Liang AH, Zhang NN, Jiang ZL, Wang SM (2008) A sensitive resonance scattering spectral assay for the determination of trace H2O2 based on the HRP catalytic reaction and nanogold aggregation. J Fluoresc 18:1035-041 CrossRef
    22. Jiang ZL, Fan YY, Chen ML, Liang AH, Liao XJ, Wen GQ, Shen XC, He XC, Pan HC, Jiang HS (2009) Resonance scattering spectral detection of trace Hg(II) using aptamer modified nanogold as probe and nanocatalyst. Anal Chem 81:5439-445 CrossRef
    23. Liang AH, Zhou LP, Qin HM, Zhang Y, Ouyang HX, Jiang ZL (2011) A highly sensitive aptamer-nanogold catalytic resonance scattering spectral assay for melamine. J Fluoresc 21:1907-912 CrossRef
    24. Jiang ZL, Li F, Li TS, Liang H (2000) The relationship between resonance scattering intensity and the size of Au particles. Chem J Chinese U 21:1488-490
    25. Wu LN, Zhang XJ, Ju HX (2007) Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential. Anal Chem 79:453-58 CrossRef
    26. Shi J, Ci PL, Wang F, Peng H, Yang PX, Wang LW, Wang QJ, Chu PK (2011) Pd/Ni/Si-microchannel-plate-based amperometric sensor for ethanol detection. Electrochim Acta 56:4197-202 CrossRef
  • 作者单位:Yanghe Luo (1) (2)
    Pengfei Wang (1)
    Tingsheng Li (1)
    Jianniao Tian (1)
    Aihui Liang (1)
    Zhiliang Jiang (1)

    1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education; Guangxi Key Laboratory of Environmental Engineering, Protection and Assessment, Guangxi Normal University, Guilin, 541004, China
    2. Province Key Construction Laboratory of Characteristic Resources Research and Development of East Guangxi, Hezhou University, Hezhou, 542800, China
  • ISSN:1557-1963
文摘
In pH?8.4 Tris–HCl buffer solutions, alcohol dehydrogenase catalyzed the reaction between ethanol and nicotinamide adenine dinucleotide to produce acetaldehyde. In the medium of HCl, acetaldehyde reduced HAuCl4 to form gold particles that exhibited a strong resonance scattering (RS) peak at 600?nm. The RS peak increased with ethanol concentration. The increased RS intensity at 600?nm (ΔI 600?nm) was proportional to the ethanol concentration (C) from 0.068 to 10.2?mmol/L, with a regression equation of ΔI 600?nm--5.59-em class="a-plus-plus">C--6.1, and a detection limit (3σ) of 3.2?μmol/L. This proposed method was applied to detect ethanol in saliva and plant cell culture medium samples, with satisfactory results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700