用户名: 密码: 验证码:
Optimization of LiMn2O4 electrode properties in a gradient- and surrogate-based framework
详细信息    查看全文
  • 作者:Wenbo Du (139)
    Nansi Xue (139)
    Amit Gupta (139) (239)
    Ann M. Sastry (339)
    Joaquim R. R. A. Martins (139)
    Wei Shyy (139) (439)
  • 关键词:Lithium ; ion battery ; Optimization ; Surrogate modeling ; Porous electrode model
  • 刊名:Acta Mechanica Sinica
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:29
  • 期:3
  • 页码:335-347
  • 全文大小:864KB
  • 参考文献:1. Grasmeyer, J. M., Keennon, M. T.: Development of the black widow micro air vehicle. In: Mueller TJ (ed) Fixed and flapping wing aerodynamics for micro air vehicle applications. (Progress in astronautics and aeronautics) AIAA Reston Vol. 195, VA (2001)
    2. Lu, C. H., Lin, S.W.: Influence of the particle size on the electrochemical properties of lithium manganese oxide. J. Power Sources 97, 458鈥?60 (2001) CrossRef
    3. Drezen, T., Kwon, N. H., Bowen, P., et al.: Effect of particle size on LiMnPO4 cathodes. J. Power Sources 174, 949鈥?53 (2007) CrossRef
    4. Tran, T. D., Feikert, J. H., Pekala, R.W., et al.: Rate effect on lithium-ion graphite electrode performance. J. Applied Electrochem. 26, 1161鈥?167 (1996) CrossRef
    5. Garcia, R. E., Chiang, Y. M., Carter, W. C., et al.: Microstructuralmodeling and design of rechargeable lithium-ion batteries. J. Electrochem. Soc. 152, A255鈥揂263 (2004) CrossRef
    6. Darling, R., Newman, J.: Modeling a porous intercalation electrode with two characteristic particle sizes. J. Electrochem. Soc. 144, 4201鈥?208 (1997) CrossRef
    7. Ahn, S., Kim, Y., Kim, K. J., et al.: Development of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives. J. Power Sources 81, 896鈥?01 (1999) CrossRef
    8. Haran, B., Popov, B. N., White, R. E.: Determination of the hydrogen diffusion coefficient in metal hydrides by impedance spectroscopy. J. Power Sources 75, 56鈥?3 (1998) CrossRef
    9. Santhanagopalan, S., Guo, Q., White, R. E.: Parameter estimation and model discrimination for a lithium-ion cell. J. Electrochem. Soc. 154, A198鈥揂206 (2007) CrossRef
    10. Verbrugge, M. W., Conell R. S.: Electrochemical and thermal characterization of battery modules commensurate with electric vehicle integration. J. Electrochem. Soc. 149, A45鈥揂53 (2002) CrossRef
    11. Liaw, B. Y., Nagasubramanian, G., Jungst, R. G., et al.: Modeling of lithium ion cells鈥攁 simple equivalent-circuit model approach. Solid State Ionics 175, 835鈥?39 (2004) CrossRef
    12. Ramadass, P., Haran, B., White, R. E., et al.: Mathematical modeling of the capacity fade of Li-ion cells. J. Power Sources 123, 230鈥?40 (2003) CrossRef
    13. Zhang, X., Shyy, W., Sastry, A. M.: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154, A910鈥揂916 (2007) CrossRef
    14. Zhang, X., Sastry, A. M., Shyy, W.: Intercalation-induced stress and heat generation within single lithium-ion battery electrode particles. J. Electrochem. Soc. 155, A542鈥揂552 (2008) CrossRef
    15. Gupta, A., Seo, J. H., Zhang, X., et al.: Effective transport properties of LiMn2O4 electrode via particle-scale modeling. J. Electrochem. Soc. 158, A487鈥揂497 (2011) CrossRef
    16. Wang, C. W., Sastry, A. M.: Mesoscale modeling of a Li-ion polymer cell. J. Electrochem. Soc. 154, A1035鈥揂1047 (2007) CrossRef
    17. Ramadesigan, V., Boovaragavan, V., Pirkle, J. C., et al.: Efficient reformulation of solid-phase diffusion in physics-based lithium-ion battery models. J. Electrochem. Soc. 157, A854鈥揂860 (2010) CrossRef
    18. Northrop, P. W. C., Ramadesigan, V., De, S., et al.: Coordinate transformation, orthogonal collocation, model reformulation and simulation of electrochemical-thermal behavior of lithium-ion battery stacks. J. Electrochem. Soc. 158, A1461鈥揂1477 (2011) CrossRef
    19. De, S., Northrop, P. W. C., Ramadesigan, V., et al.: Modelbased simultaneous optimization of multiple design parameters for lithium-ion batteries for maximization of energy density. J. Power Sources 227, 161鈥?70 (2013) CrossRef
    20. Ramadesigan, V., Northrop, P. W. C., De, S., et al.: Modeling and simulation of lithium-ion batteries from a systems engineering perspective. J. Electrochem. Soc. 159, R31鈥揜45 (2012) CrossRef
    21. Srinivasan, V., Newman, J.: Design and optimization of a natural graphite/iron phosphate lithium-ion cell. J. Electrochem. Soc. 151, A1530鈥揂1538 (2004) CrossRef
    22. Stephenson, D. E., Hartman, E. M., Harb, J. H., et al.: Modeling of particle-particle interactions in porous cathodes for lithium-ion batteries. J. Electrochem. Soc. 154, A1146鈥揂1155 (2007) CrossRef
    23. Fletcher, R., Powell, M. J. D.: A rapidly convergent descent method for minimization. The Computer Journal 6, 163鈥?68 (1963) CrossRef
    24. Nelder, J. A., Mead. R.: A simplex method for function minimization. The Computer Journal 7, 308鈥?13 (1965) CrossRef
    25. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. Proceedings of IEEE international conference on neural networks 4, 1942鈥?948 (1995) CrossRef
    26. Zingg, D.W., Nemec, M., Pulliam, T. H.: A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization. REMN 17, 103鈥?26 (2008)
    27. Shyy, W., Cho, Y. C., Du, W., et al.: Surrogate-based modeling and dimension reduction techniques for multi-scale mechanics problems. Acta Mechanica Sinica 27, 845鈥?65 (2011) CrossRef
    28. Tseng, C., Shyy, W.: Modeling for isothermal and cryogenic cavitation. Int. J. Heat and Mass Transfer 53, 513鈥?25 (2010) CrossRef
    29. Du, W., Gupta, A., Zhang, X., et al.: Effect of cycling rate, particle size and transport properties on lithium-ion cathode performance. Int. J. Heat and Mass Transfer 53, 3552鈥?561 (2010) CrossRef
    30. Doyle, M., Fuller, T. F., Newman, J.: Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 140, 1526鈥?533 (1993) CrossRef
    31. Doyle, M., Newman, J., Gozdz, A.S., et al.: Comparison of modeling predictions with experimental data from plastic lithium ion cells. J. Electrochem. Soc. 143, 1890鈥?903 (1996) CrossRef
    32. Fuller, T. F., Doyle, M., Newman, J.: Simulation and optimization of the dual lithium ion insertion cell. J. Electrochem. Soc. 141, 1鈥?0 (1994) CrossRef
    33. Queipo, N. V., Haftka, R. T., Shyy, W., et al.: Surrogate-based analysis and optimization. Prog. Aero. Sci. 41, 1鈥?8 (2005) CrossRef
    34. McKay, M. D., Beckman, R. J., Conover, W. J.: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239鈥?45 (1979)
    35. Myers, R. H., Montgomery, D. C.: Response Surface Methodology: Process and Product in Optimization Using Designed Experiments. Wiley and Sons Inc., New York, New York (1995)
    36. Lophaven, S. N., Nielsen, H. B., Sondergaard, J.: DACE鈥擜 Matlab kriging toolbox. Version 2.0, Technical Report, IMM-TR-2002-12, Technical University of Denmark, Denmark (2002)
    37. Goel, T., Dorney, D. J., Haftka, R. T., et al.: Improving the hydrodynamic performance of diffuser vanes via shape optimization. Computers & Fluids 37, 705鈥?23 (2008) CrossRef
    38. Sobol, I.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in simulation 55, 271鈥?80 (2001) CrossRef
    39. Mack, Y., Goel, T., Shyy, W., et al.: Surrogate Model-based Optimization Framework: A Case Study in Aerospace Design. In: Yang S, Ong YS, Jin Y (eds) Evolutionary computation in dynamic and uncertain environments. (Studies in computational intelligence) Springer, Berlin Heidelberg New York, 323鈥?42 (2007) CrossRef
    40. Gill P. E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Journal on optimization 12, 979鈥?006 (2002) CrossRef
    41. Martins, J. R. R. A., Sturdza, P., Alonso, J.J.: The complex-step derivative approximation. ACM Transactions on Mathematical Software 29, 245鈥?62 (2003) CrossRef
    42. Powell, M. J. D.: A fast algorithm for nonlinearly constrained optimization calculations. In: Watson GA (ed) Lecture notes in mathematics. (Numerical analysis) Springer, Berlin Heidelberg New York, 144鈥?57 (1978)
    43. Chen, Y. H., Wang, C. W., Zhang, X., et al.: Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity, and selection of materials. J. Power Sources, 195, 2851鈥?862 (2010) CrossRef
  • 作者单位:Wenbo Du (139)
    Nansi Xue (139)
    Amit Gupta (139) (239)
    Ann M. Sastry (339)
    Joaquim R. R. A. Martins (139)
    Wei Shyy (139) (439)

    139. Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
    239. Department of Mechanical Engineering, Indian Institute of Technology, New Delhi, India
    339. Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
    439. Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
文摘
In this study, the effects of discharge rate and LiMn2O4 cathode properties (thickness, porosity, particle size, and solid-state diffusivity and conductivity) on the gravimetric energy and power density of a lithium-ion battery cell are analyzed simultaneously using a cell-level model. Surrogate-based analysis tools are applied to simulation data to construct educed-order models, which are in turn used to perform global sensitivity analysis to compare the relative importance of cathode properties. Based on these results, the cell is then optimized for several distinct physical scenarios using gradient-based methods. The complementary nature of the gradient- and surrogate-based tools is demonstrated by establishing proper bounds and constraints with the surrogate model, and then obtaining accurate optimized solutions with the gradient-based optimizer. These optimal solutions enable the quantification of the tradeoffs between energy and power density, and the effect of optimizing the electrode thickness and porosity. In conjunction with known guidelines, the numerical optimization framework developed herein can be applied directly to cell and pack design.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700