用户名: 密码: 验证码:
ACE2 Activation Confers Endothelial Protection and Attenuates Neointimal Lesions in Prevention of Severe Pulmonary Arterial Hypertension in Rats
详细信息    查看全文
  • 作者:Gang Li (1)
    Yinglong Liu (1)
    Yaobin Zhu (1)
    Aijun Liu (1)
    Yulin Xu (1)
    Xiaofeng Li (1)
    Zhiqiang Li (1)
    Junwu Su (1)
    Lizhong Sun (2)
  • 关键词:Pulmonary arterial hypertension ; Endothelial dysfunction ; Remodeling ; Angiotensin
  • 刊名:Lung
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:191
  • 期:4
  • 页码:327-336
  • 全文大小:447KB
  • 参考文献:1. Fukumoto Y, Shimokawa H (2011) Recent progress in the management of pulmonary hypertension. Circ J 75(8):1801-810 CrossRef
    2. Nicod LP (2007) The endothelium and genetics in pulmonary arterial hypertension. Swiss Med Wkly 137:437-42
    3. Shenoy V, Qi Y, Katovich MJ et al (2011) ACE2, a promising therapeutic target for pulmonary hypertension. Curr Opin Pharmacol 11:150-55 CrossRef
    4. Marshall RP (2003) The pulmonary rennin-angiotensin system. Curr Pharm Des 9:715-22 CrossRef
    5. Bradford CN, Ely DR, Raizada MK (2010) Targeting the vasoprotective axis of the renin-angiotensin system: a novel strategic approach to pulmonary hypertensive therapy. Curr Hypertens Rep 12:212-19 CrossRef
    6. Imai Y, Kuba K, Ohto-Nakanishi T et al (2010) Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesis. Circ J 74(3):405-10 CrossRef
    7. Yamazato Y, Ferreira AJ, Hong KH et al (2009) Prevention of pulmonary hypertension by angiotensin-converting enzyme 2 gene transfer. Hypertension 54:365-71 CrossRef
    8. Ferreira AJ, Shenoy V, Yamazato Y et al (2009) Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. Am J Respir Crit Care Med 179:1048-054 CrossRef
    9. Hernández Prada JA, Ferreira AJ, Katovich MJ, Shenoy V et al (2008) Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertension 51:1312-317 CrossRef
    10. Li G, Xu YL, Ling F et al (2012) Angiotensin-converting enzyme 2 activation protects against pulmonary arterial hypertension through improving early endothelial function and mediating cytokines levels. Chin Med J (Engl) 125(8):1381-388
    11. Okada K, Tanaka Y, Bernstein M et al (1997) Pulmonary hemodynamics modify the rat pulmonary artery response to injury. A neointimal model of pulmonary hypertension. Am J Pathol 151:1019-025
    12. Schermuly RT, Dony E, Ghofrani HA et al (2005) Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 115:2811-821 CrossRef
    13. Hyman AL, Hao Q, Tower A et al (1998) Novel catheterization technique for the in vivo measurement of pulmonary vascular responses in rats. Am J Physiol 274:H1218–H1229
    14. Nishimura T, Vaszar LT, Faul JL et al (2003) Simvastatin rescues rats from fatal pulmonary hypertension by inducing apoptosis of neointimal smooth muscle cells. Circulation 108:1640-645 CrossRef
    15. Gembardt F, Sterner-Kock A, Imboden H, Spalteholz M et al (2005) Organ-specific distribution of ACE2 mRNA and correlating peptidase activity in rodents. Peptides 26:1270-277 CrossRef
    16. Zhong JC, Yu XY, Lin QX et al (2008) Enhanced angiotensin converting enzyme 2 regulates the insulin/Akt signalling pathway by blockade of macrophage migration inhibitory factor expression. Br J Pharmacol 153(1):66-4 CrossRef
    17. Lovren F, Pan Y, Quan A et al (2008) Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am J Physiol Heart Circ Physiol 295:H1377–H1384 CrossRef
    18. Sampaio WO, Souza dos Santos RA, Faria-Silva R, da Mata Machado LT et al (2007) Angiotensin-(1-) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension 49(1):185-92 CrossRef
    19. Muthalif MM, Benter IF, Uddin MR et al (1998) Signal transduction mechanisms involved in angiotensin-(1-)-stimulated arachidonic acid release and prostanoid synthesis in rabbit aortic smooth muscle cells. J Pharmacol Exp Ther 284(1):388-98
    20. Zhang C, Zhao YX, Zhang YH et al (2010) Angiotensin-converting enzyme 2 attenuates atherosclerotic lesions by targeting vascular cells. Proc Natl Acad Sci USA 107:15886-5891 CrossRef
    21. Rentzsch B, Todiras M, Iliescu R et al (2008) Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension 52:967-73 CrossRef
    22. Hacking WJ, VanBavel E, Spaan JA (1996) Shear stress is not sufficient to control growth of vascular networks: a model study. Am J Physiol 270:H364–H375
    23. Pasterkamp G, Galis ZS, de Kleijn DP (2004) Expansive arterial remodeling: location, location, location. Arterioscler Thromb Vasc Biol 24:650-57 CrossRef
    24. Shenoy V, Ferreira AJ, Qi Y et al (2010) The angiotensin-converting enzyme 2/angiogenesis-(1-)/Mas axis confers cardiopulmonary protection against lung fibrosis and pulmonary hypertension. Am J Respir Crit Care Med 182:1065-072 CrossRef
    25. Huang H, Zhang P, Wang Z et al (2011) Activation of endothelin-1 receptor signaling pathways is associated with neointima formation, neoangiogenesis and irreversible pulmonary artery hypertension in patients with congenital heart disease. Circ J 75(6):1463-471 CrossRef
    26. Curcio A, Torella D, Indolfi C (2011) Mechanisms of smooth muscle cell proliferation and endothelial regeneration after vascular injury and stenting: approach to therapy. Circ J 75(6):1287-296 CrossRef
    27. Hayashi N, Yamamoto K, Ohishi M et al (2010) The counterregulating role of ACE2 and ACE2-mediated angiotensin 1- signaling against angiotensin II stimulation in vascular cells. Hypertens Res 33:1182-185 CrossRef
    28. Jin XQ, Lu ZQ, Lin X (2011) Effect of ACE2 gene transfection on the proliferation of vascular smooth muscle cells in rats. Zhonghua Yi Xue Za Zhi 91:125-28
    29. Sampaio WO, Henrique de Castro C et al (2007) Angiotensin-(1-) counterregulates angiotensin II signaling in human endothelial cells. Hypertension 50:1093-098 CrossRef
    30. Igase M, Kohara K, Nagai T et al (2008) Increased expression of angiotensin converting enzyme 2 in conjunction with reduction of neointima by angiotensin II type 1 receptor blockade. Hypertens Res 31:553-59 CrossRef
    31. Ferreira AJ, Shenoy V, Qi Y, Fraga-Silva RA et al (2011) Angiotensin-converting enzyme 2 activation protects against hypertension-induced cardiac fibrosis involving extracellular signal-regulated kinases. Exp Physiol 96(3):287-94 CrossRef
    32. Xie X, Chen J, Wang X et al (2006) Age- and gender-related difference of ACE2 expression in rat lung. Life Sci 78(19):2166-171 CrossRef
    33. Vickers C, Hales P, Kaushik V et al (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277:14838-4843 CrossRef
  • 作者单位:Gang Li (1)
    Yinglong Liu (1)
    Yaobin Zhu (1)
    Aijun Liu (1)
    Yulin Xu (1)
    Xiaofeng Li (1)
    Zhiqiang Li (1)
    Junwu Su (1)
    Lizhong Sun (2)

    1. Pediatric Cardiac Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
    2. Cardiovascular Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
文摘
Background Angiotensin-converting enzyme 2 (ACE2), an ACE homolog, hydrolyzes angiotensin II and opposes its actions, and plays a protective role in the pathogenesis of pulmonary arterial hypertension (PAH). However, the underlying mechanisms involved in the effect of ACE2 on PAH are still uncertain. In this study, we observed the effects of ACE2 activation on endothelial dysfunction and vascular remodeling in the development of severe PAH in rats. Methods Severe PAH was induced by monocrotaline injection 1?week following left pneumonectomy, and ACE2 was activated by continuous injection of resorcinolnaphthalein. The PAH-related hemodynamics, pathological changes, and endothelium-dependent vasorelaxation were examined to assess the effects of ACE2 activation. In addition, the changes of the main components of the renin-angiotensin system were identified by ELISA or Western blotting. Results Severe PAH was established at 3?weeks and was characterized by high pulmonary arterial pressure (45?mmHg), significant right ventricular hypertrophy, neointimal occlusive lesions, and impaired endothelium-dependent relaxation in pulmonary arteries. Coadministration of resorcinolnaphthalein reduced pulmonary arterial pressure, right ventricular hypertrophy, and neointimal formation and shifted the endothelial-dependent responses toward values measured in normal rats. Theses changes were associated with an increase in ACE2 and angiotensin-(1-) levels and a decrease in ACE and angiotensin II levels, in addition to a decrease in the ACE/ACE2 ratio and the angiotensin II/angiotensin-(1-) ratio. The beneficial effects of resorcinolnaphthalein were abolished by A-779. Conclusions These findings suggested that ACE2 activation by resorcinolnaphthalein improved endothelial function and suppressed neointimal formation in the prevention of severe PAH by the mechanism of mediating the levels of the components of the renin-angiotensin system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700