用户名: 密码: 验证码:
Metal accumulation by submerged macrophytes in eutrophic lakes at the watershed scale
详细信息    查看全文
  • 作者:Wei Xing (1)
    Haoping Wu (1) (2)
    Beibei Hao (1) (2)
    Guihua Liu (1)
  • 关键词:Accumulation ; Metals ; Submerged macrophytes ; Eutrophic lakes ; The middle and lower reaches of the Yangtze River
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:20
  • 期:10
  • 页码:6999-7008
  • 全文大小:360KB
  • 参考文献:1. Adki VS, Jadhav JP, Bapat VA (2013) / Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant. Environ Sci Pollut Res 20:1173鈥?180 CrossRef
    2. Albers PH, Camardese MB (1993) Effects of acidification on metal accumulation by aquatic plants and invertebrates. 2. Wetlands, ponds and small lakes. Environ Toxicol Chem 12:969鈥?76 CrossRef
    3. Browne R, Lutz D (2010) Lake ecosystem effects associated with top-predator removal due to selenium toxicity. Hydrobiologia 655:137鈥?48 CrossRef
    4. Caldwell EF, Duff MC, Ferguson CE, Coughlin DP, Hicks RA, Dixon E (2012) Bio-monitoring for uranium using stream-side terrestrial plants and macrophytes. J Environ Monitor 14:968鈥?76 CrossRef
    5. Cindri膰 IJ, Zeiner M, Kr枚ppl M, Stingeder G (2011) Comparison of sample preparation methods for the ICP-AES determination of minor and major elements in clarified apple juices. Microchem J 99:364鈥?69 CrossRef
    6. Clabeaux BL, Navarro DA, Aga DS, Bisson MA (2011) Cd tolerance and accumulation in the aquatic macrophyte, / Chara australis: potential use for charophytes in phytoremediation. Environ Sci Technol 45:5332鈥?338 CrossRef
    7. Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014鈥?015 CrossRef
    8. Croteau M-N, Luoma SN, Stewart AR (2005) Trophic transfer of metals along freshwater food webs: evidence of cadmium biomagnification in nature. Limnol Oceanogr 50:1511鈥?519 CrossRef
    9. Dhir B, Sharmila P, Saradhi PP (2009) Potential of aquatic macrophytes for removing contaminants from the environment. Crit Rev Environ Sci Technol 39:754鈥?81 CrossRef
    10. Dumon J, Ernst W (1988) Titanium in plants. J Plant Physiol 133:203鈥?09 CrossRef
    11. Fritioff 脜, Kautsky L, Greger M (2005) Influence of temperature and salinity on heavy metal uptake by submersed plants. Environ Pollut 133:265鈥?74 CrossRef
    12. Gallon C, Munger C, Pr茅mont S, Campbell PGC (2004) Hydroponic study of aluminum accumulation by aquatic plants: effects of fluoride and pH. Water Air Soil Pollut 153:135鈥?55 CrossRef
    13. Hamilton SJ, Buhl KJ (2004) Selenium in water, sediment, plants, invertebrates, and fish in the blackfoot river drainage. Water Air Soil Pollut 159:3鈥?4 CrossRef
    14. Hawrylak-Nowak B, Kalinowska M, Szyma艅ska M (2012) A study on selected physiological parameters of plants grown under lithium supplementation. Biol Trace Elem Res 149:425鈥?30 CrossRef
    15. Hrub媒 M, C铆gler P, Kuzel S (2002) Contribution to understanding the mechanism of titanium action in plant. J Plant Nutr 25:577鈥?98 CrossRef
    16. Ivanova EA, Anischenko OV, Gribovskaya IV, Zinenko GK, Nazarenko NS, Nemchinov VG, Zuev IV, Avramov AP (2012) Metal content in higher aquatic plants in a small Siberian water reservoir. Contemp Probl Ecol 5:356鈥?64 CrossRef
    17. Kabata-Pendias A (2001) Trace elements in soils and plants. CRC Press, Boca Raton
    18. Lenz M, Lens PNL (2009) The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 407:3620鈥?633 CrossRef
    19. Marschner H (1995) Mineral nutrition of higher plants. Academic, New York
    20. Mazej Z, Germ M (2009) Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere 74:642鈥?47 CrossRef
    21. Mazej Z, Al Sayegh-Petkovsek S, Pokorny B (2010) Heavy metal concentrations in food chain of Lake Velenjsko jezero, Slovenia: an artificial lake from mining. Arch Environ Contam Toxicol 58:998鈥?007 CrossRef
    22. Mechora 艩, Cuderman P, Stibilj V, Germ M (2011) Distribution of Se and its species in / Myriophyllum spicatum and / Ceratophyllum demersum growing in water containing Se (VI). Chemosphere 84:1636鈥?641 CrossRef
    23. Memon AR, Schroder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162鈥?75 CrossRef
    24. Monferr谩n MV, Pignata ML, Wunderlin DA (2012) Enhanced phytoextraction of chromium by the aquatic macrophyte / Potamogeton pusillus in presence of copper. Environ Pollut 161:15鈥?2 CrossRef
    25. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15鈥?9 CrossRef
    26. Rai PK (2009) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol 39:697鈥?53 CrossRef
    27. Rawlence DJ, Whitton JS (1977) Elements in aquatic macrophytes, water, plankton, and sediments surveyed in three North Island Lakes. N Z J Mar Freshw Res 11:73鈥?3 CrossRef
    28. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193鈥?29
    29. Samecka-Cymerman A, Kempers AJ (2004) Toxic metals in aquatic plants surviving in surface water polluted by copper mining industry. Ecotoxicol Environ Saf 59:64鈥?9 CrossRef
    30. Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte / Najas indica are related to antioxidant system. Bioresour Technol 101:3025鈥?032 CrossRef
    31. Sprenger M, McIntosh A (1989) Relationship between concentrations of aluminum, cadmium, lead, and zinc in water, sediments, and aquatic macrophytes in six acidic lakes. Arch Environ Contam Toxicol 18:225鈥?31 CrossRef
    32. Vardanyan LG, Ingole BS (2006) Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environ Int 32:208鈥?18 CrossRef
    33. Vlasov BP, Gigevich GS (2006) Estimation of pollution of lakes of Belarus under the contents of heavy metals in water plants and bottom sediments. Limnol Rev 6:289鈥?94
    34. Wallace A, Romney EM, Cha JW, Chaudhry FM (1977) Lithium toxicity in plants. Commun Soil Sci Plant Anal 8:773鈥?80 CrossRef
    35. Wang C, Lu J, Zhang S, Wang P, Hou J, Qian J (2011) Effects of Pb stress on nutrient uptake and secondary metabolism in submerged macrophyte / Vallisneria natans. Ecotoxicol Environ Saf 74:1297鈥?303 CrossRef
    36. Xing W, Wu H-P, Hao B-B, Liu G-H (2013) Stoichiometric characteristics and responses of submerged macrophytes to eutrophication in lakes along the middle and lower reaches of the Yangtze River. Ecol Eng 54:16鈥?1 CrossRef
    37. Xue PY, Yan CZ (2011) Arsenic accumulation and translocation in the submerged macrophyte / Hydrilla verticillata (L.f.) Royle. Chemosphere 85:1176鈥?181 CrossRef
    38. Zeng H-A, Wu J-L (2009) Sedimentary records of heavy metal pollution in Fuxian Lake, Yunnan Province, China: intensity, history, and sources. Pedosphere 19:562鈥?69 CrossRef
    39. Zeng H, Wu J (2013) Heavy metal pollution of lakes along the mid-lower reaches of the Yangtze River in China: intensity, sources and spatial patterns. Int J Environ Res Public Health 10:793鈥?07 CrossRef
  • 作者单位:Wei Xing (1)
    Haoping Wu (1) (2)
    Beibei Hao (1) (2)
    Guihua Liu (1)

    1. Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
    2. University of Chinese Academy of Sciences, Beijing, 100049, China
  • ISSN:1614-7499
文摘
Metal concentrations (Al, Ba, Ca, K, Li, Mg, Na, Se, Sr and Ti) in submerged macrophytes and corresponding water and sediments were studied in 24 eutrophic lakes along the middle and lower reaches of the Yangtze River (China). Results showed that these eutrophic lakes have high metal concentrations in both water and sediments because of human activities. Average concentrations of Al and Na in tissues of submerged macrophytes were very high in sampled eutrophic lakes. By comparison, Ceratophyllum demersum and Najas marina accumulated more metals (e.g. Ba, Ca, K, Mg, Na, Sr and Ti). Strong positive correlations were found between metal concentrations in tissues of submerged macrophytes, probably because of co-accumulation of metals. The concentrations of Li, Mg, Na and Sr in tissues of submerged macrophytes significantly correlated with their corresponding water values, but not sediment values.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700