用户名: 密码: 验证码:
Diffusion compensation for argon, hydrogen, lead, and stront
详细信息   在线全文   PDF全文下载
  • journal_title:American Mineralogist
  • Contributor:Zi-Fu Zhao ; Yong-Fei zheng
  • Publisher:Mineralogical Society of America
  • Date:2007-
  • Format:text/html
  • Language:en
  • Identifier:10.2138/am.2007.2127
  • journal_abbrev:American Mineralogist
  • issn:0003-004X
  • volume:92
  • issue:2-3
  • firstpage:289
  • section:Articles
摘要

Inspection of available experimental data reveals log-linear compensation effects between activation energies and pre-exponential factors for Ar, H, Pb, and Sr diffusion in a wide array of minerals. As a result, diffusion of Ar, H, Pb, and Sr converges to the same rates, respectively, at isokinetic temperatures in these minerals. Ionic porosity, Z, defined as the fraction of the unit-cell volume in a mineral not occupied by ions, is a measure of atomic packing density in silicate, carbonate, and phosphate minerals. Experimental diffusion parameters exhibit first-order correlations with ionic porosity, which proxies for mean metal-oxygen bond length/strength in minerals. An empirical kinetics-porosity model systematizes Ar, H, Pb, and Sr diffusion in minerals for which experimental diffusion data exist. For Ar and H diffusion, linear correlations are documented between activation energy and total ionic porosity. Combination of these correlations with diffusional compensation effects, which are also documented, yields empirical relationships among elemental diffusivity, total ionic porosity, and temperature. Linear correlations are also observed between experimental diffusion coefficients for Pb and Sr at given temperatures and calculated ionic porosities. For most minerals, the empirical predictions are remarkably consistent with experimental data, which strengthens the link between crystal chemistry and diffusion kinetics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700