用户名: 密码: 验证码:
Pressure-dependent seismic velocities based on effective compliance theory and an asperity deformation model
详细信息   在线全文   PDF全文下载
  • journal_title:Geophysics
  • Contributor:Kai Gao ; Richard L. Gibson ; Jr.
  • Publisher:Society of Exploration Geophysicists
  • Date:2012-11-01
  • Format:text/html
  • Language:en
  • Identifier:10.1190/geo2012-0041.1
  • journal_abbrev:Geophysics
  • issn:0016-8033
  • volume:77
  • issue:6
  • firstpage:D229
  • section:Borehole Geophysics and Rock Properties
摘要

Seismic velocities of rocks depend strongly on confining pressure, which is often explained by the fracture compliances changes within the rocks. It is important to have an accurate model describing the relations between confining pressure and seismic velocities for applications such as time-lapse reservoir characterization. We propose a new model to address this problem by combining the existing effective compliance theory with new solutions for the pressure dependence of fracture compliances. Specifically, we assume the fracture contact surface can be represented by a set of elastic hemispheres with radii following power-law distribution, and the pressure dependence of seismic velocities can be expressed through pressure-dependent normal and tangential fracture compliances that are derived from Hertzian contact theory. Joint data fittings of P- and S-wave velocity laboratory data show that our model is accurate. We also implement fluid substitution using our model to explain the similar stress-induced velocity variations of fluid-saturated fractured rocks.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700