用户名: 密码: 验证码:
Optimum split-step Fourier 3D depth migr
详细信息   在线全文   PDF全文下载
  • journal_title:Geophysics
  • Contributor:Jianfeng Zhang ; Linong Liu
  • Publisher:Society of Exploration Geophysicists
  • Date:2007-
  • Format:text/html
  • Language:en
  • Identifier:10.1190/1.2715658
  • journal_abbrev:Geophysics
  • issn:0016-8033
  • volume:72
  • issue:3
  • firstpage:S167
  • section:SEISMIC MIGRATION
摘要

We present an efficient scheme for depth extrapolation of wide-angle 3D wavefields in laterally heterogeneous media. The scheme improves the so-called optimum split-step Fourier method by introducing a frequency-independent cascaded operator with spatially varying coefficients. The developments improve the approximation of the optimum split-step Fourier cascaded operator to the exact phase-shift operator of a varying velocity in the presence of strong lateral velocity variations, and they naturally lead to frequency-dependent varying-step depth extrapolations that reduce computational cost significantly. The resulting scheme can be implemented alternatively in spatial and wavenumber domains using fast Fourier transforms (FFTs). The accuracy of the first-order approximate algorithm is similar to that of the second-order optimum split-step Fourier method in modeling wide-angle propagation through strong, laterally varying media. Similar to the optimum split-step Fourier method, the scheme is superior to methods such as the generalized screen and Fourier finite difference. We demonstrate the scheme's accuracy by comparing it with 3D two-way finite-difference modeling. Comparisons with the 3D prestack Kirchhoff depth migration of a real 3D data set demonstrate the practical application of the proposed method.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700