用户名: 密码: 验证码:
Evolution of the Cretaceous Astrid thrust belt
详细信息   在线全文   PDF全文下载
摘要

The Lower Congo Basin contains the greatest salt-based fold and thrust belt off Africa's Atlantic margin. Our study area in the Anton Marin and Astrid Marin exploration blocks is in the northern part of the basin. Gravity-driven tectonic shortening began soon after the Aptian salt deposition, forming gentle, west-trending, salt-cored anticlines, which, together with salt diapirs, created a template for later thrusting. In the Late Cretaceous, a thrust front propagated landward into the study area, and thrusts formed above salt anticlines and diapirs. Formation of a hanging-wall wedge of growth strata was recorded when each thrust fault ruptured the seabed. Thrusting began after widespread salt thinning, as autochthonous salt was expelled into older, passive diapirs. Thinning stiffened the detachment, so that thrusts verge strongly seaward. Structural restorations, dip-corrected isochron maps, and fault-activity graphs all show that the landward edge of the thrust belt propagated landward. Three main pulses of shortening episodically reactivated thrust faults as the thrust front broke landward. As thrusting culminated, precursor passive diapirs were squeezed and extruded small allochthonous sheets. Translation culminated in major erosional scouring, from which we infer epeirogenic slope steepening in the Late Cretaceous. As shortening spread updip into the previously extensional domain during the Late Cretaceous to Paleogene, older extensional faults were inverted, and new extensional faults formed orthogonally, parallel to the regional paleoslope. The structural pattern, created in the Late Cretaceous when the paleoslope dipped southward, remains recognizable in the little-deformed Neogene strata, although the present continental slope dips westward.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700