用户名: 密码: 验证码:
Cámaraite, Ba3NaTi4(Fe2+,Mn)8(Si2O7)4O4(OH,F)7. I. A new Ti-silicate mi
详细信息   ld.org/content/73/5/847.full">在线全文   ld.org/content/73/5/847.full.pdf">PDF全文下载
摘要

Cámaraite, ideally Ba3NaTi4(Fe2+,Mn)8(Si2O7)4O4(OH,F)7, is a new mineral from the Verkhnee Espe deposit, Akjailyautas Mountains, Kazakhstan. It occurs as intergrowths with bafertisite and jinshajiangite in separate platy crystals up to 8 mm × 15 mm × 2 mm in size, or as star-shaped aggregates of crystals with different orientations. Individual crystals are orange-red to brownish-red, and are platy on {001}. Cámaraite is translucent and has a pale-yellow streak, a vitreous lustre, and does not fluoresce under cathode or ultraviolet light. Cleavage is {001} perfect, no parting was observed, and Mohs hardness is <5; the mineral is brittle. The calculated density is 4.018 g cm-3. In transmitted light, cámaraite is strongly pleochroic, X = light brown, Y = reddish-brown, Z = yellow-brown, with Z < X < Y. Cámaraite is biaxial +ve and 2Vmeas. = 93(1)°. All refractive indices are greater than 1.80. Cámaraite is triclinic, space group Class="inline-formula" id="inline-formula-1">lass="math tex" alt="Formula" src="847/embed/tex-math-1.gif" />, a = 10.678(4) Å, b = 13.744(8) Å, c = 21.40(2) Å, α = 99.28(8)°, β = 92.38(5)°, γ = 90.00(6)°, V = 3096(3) Å3, Z = 4, a:b:c = 0.7761:1:1.5565. The seven strongest lines in the X-ray powder-diffraction pattern are as follows: [d (Å), (I), (hkl)]: 2.63, (100), (401); 2.79, (90), (lass="inline-formula" id="inline-formula-2">lass="math tex" alt="Formula" src="847/embed/tex-math-2.gif" />lass="inline-formula" id="inline-formula-3">lass="math tex" alt="Formula" src="847/embed/tex-math-3.gif" />3, lass="inline-formula" id="inline-formula-4">lass="math tex" alt="Formula" src="847/embed/tex-math-4.gif" />41, 2lass="inline-formula" id="inline-formula-5">lass="math tex" alt="Formula" src="847/embed/tex-math-5.gif" />6, 225); 1.721, (70), (lass="inline-formula" id="inline-formula-6">lass="math tex" alt="Formula" src="847/embed/tex-math-6.gif" />lass="inline-formula" id="inline-formula-7">lass="math tex" alt="Formula" src="847/embed/tex-math-7.gif" />11, lass="inline-formula" id="inline-formula-8">lass="math tex" alt="Formula" src="847/embed/tex-math-8.gif" />49, 0lass="inline-formula" id="inline-formula-9">lass="math tex" alt="Formula" src="847/embed/tex-math-9.gif" />2); 3.39, (50), (2lass="inline-formula" id="inline-formula-10">lass="math tex" alt="Formula" src="847/embed/tex-math-10.gif" />4, 223); 3.18, (50), (lass="inline-formula" id="inline-formula-11">lass="math tex" alt="Formula" src="847/embed/tex-math-11.gif" />lass="inline-formula" id="inline-formula-12">lass="math tex" alt="Formula" src="847/embed/tex-math-12.gif" />5, lass="inline-formula" id="inline-formula-13">lass="math tex" alt="Formula" src="847/embed/tex-math-13.gif" />24); 2.101, (50), (lass="inline-formula" id="inline-formula-14">lass="math tex" alt="Formula" src="847/embed/tex-math-14.gif" />lass="inline-formula" id="inline-formula-15">lass="math tex" alt="Formula" src="847/embed/tex-math-15.gif" />2, lass="inline-formula" id="inline-formula-16">lass="math tex" alt="Formula" src="847/embed/tex-math-16.gif" />40); 1.578, (50), (lass="inline-formula" id="inline-formula-17">lass="math tex" alt="Formula" src="847/embed/tex-math-17.gif" />lass="inline-formula" id="inline-formula-18">lass="math tex" alt="Formula" src="847/embed/tex-math-18.gif" />1, lass="inline-formula" id="inline-formula-19">lass="math tex" alt="Formula" src="847/embed/tex-math-19.gif" />lass="inline-formula" id="inline-formula-20">lass="math tex" alt="Formula" src="847/embed/tex-math-20.gif" />2, 6lass="inline-formula" id="inline-formula-21">lass="math tex" alt="Formula" src="847/embed/tex-math-21.gif" />1, lass="inline-formula" id="inline-formula-22">lass="math tex" alt="Formula" src="847/embed/tex-math-22.gif" />40). Chemical analysis by electron microprobe gave: Nb2O5 1.57, SiO2 25.25, TiO2 15.69, ZrO2 0.33, Al2O3 0.13, Fe2O3 2.77, FeO 16.54, MnO 9.46, ZnO 0.12, MgO 0.21, CaO 0.56, BaO 21.11, Na2O 1.41, K2O 0.84, H2O 1.84, F 3.11, less O ≡ F 1.31, total 99.63 wt.%, where the valence state of Fe was determined by Mössbauer spectroscopy [Fe3+/(Fe2+ + Fe3+) = 0.13(8)] and the H2O content was derived by crystal-structure determination. The resulting empirical formula on the basis of 39 anions is (Ba2.61K0.34)Σ2.95(Na0.86Ca0.14)Σ1(Ti3.72Nb0.22Al0.05)Σ3.99(lass="inline-formula" id="inline-formula-23">lass="math tex" alt="Formula" src="847/embed/tex-math-23.gif" />lass="inline-formula" id="inline-formula-24">lass="math tex" alt="Formula" src="847/embed/tex-math-24.gif" />Mn2.53Mg0.10Zr0.05Zn0.03Ca0.05)Σ7.78Si7.97O35.89H3.88F3.11. Cámaraite is a Group-II TS-block mineral in the structure hierarchy of Sokolova (lass="xref-bibr">2006). The mineral is named cámaraite after Fernando Cámara (born 1967) of Melilla, Spain, in recognition of his contribution to the fields of mineralogy and crystallography. The new mineral and mineral name have been approved by the Commission on New Minerals, Nomenclature and Classification, International Mineralogical Association (IMA 2009-11).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700