用户名: 密码: 验证码:
山区复杂线形公路小客车纵向加速度特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Longitudinal Acceleration Performance of Passenger Cars on Complex Mountain Highways
  • 作者:徐进 ; 周佳 ; 汪旭 ; 邵毅明
  • 英文作者:XU Jin;ZHOU Jia;WANG Xu;SHAO Yi-ming;Chongqing Key Laboratory of Traffic and Transportation,Chongqing Jiaotong University;Chongqing Changan Automobile Co.,Ltd.;
  • 关键词:交通工程 ; 纵向行驶特性 ; 自然驾驶行为 ; 纵向加速度 ; 制动减速度 ; 纵向舒适性
  • 英文关键词:traffic engineering;;longitudinal driving behavior;;natural driving behavior;;longitudinal acceleration;;braking deceleration;;longitudinal comfort
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:重庆交通大学交通运输工程重庆市重点实验室;重庆长安汽车股份有限公司;
  • 出版日期:2017-04-15
  • 出版单位:中国公路学报
  • 年:2017
  • 期:v.30;No.164
  • 基金:国家自然科学基金项目(51678099,51278514);; 交通运输部应用基础研究项目(2015319814050);; 重庆市科技计划项目(cstc2014jcyjA30024)
  • 语种:中文;
  • 页:ZGGL201704014
  • 页数:12
  • CN:04
  • ISSN:61-1313/U
  • 分类号:119-130
摘要
为得到山区复杂公路环境下的汽车纵向加速度特性,开展了实测总里程为3 039km的实车连续行驶试验,采集了山区双车道公路自然驾驶状态下的汽车行驶速度、轨迹、加速度等运行参数,提取了纵向加速度连续变化曲线每个波形的峰值,得到了纵向加速度的累积频率、概率分布、特征百分位值等统计分布特性,分析了纵向加速度与弯道参数和行驶速度之间的关联度和敏感性,并得到了回归关系式。结果表明:减速度累积频率曲线在某一分位值之后大于加速度,斜率突变点为第90%~95%分位,第85%分位加(减)速度值分别为0.60,0.85m·s~(-2);加(减)速度概率密度曲线均为正偏态分布,驾驶人减、加速度偏好值分别为0.17,0.25m·s~(-2);平曲线半径增大时加(减)速度随之减小,平曲线转角增加时加(减)速度随之递增,但连续弯道的递增/递减趋势要比独立弯道弱,基于第85%、第95%分位和上边界驾驶行为的减速临界半径为190,225,275m,加速临界半径为204,245,290m;行驶速度提高时加速度随之下降,至90km·h~(-1)时不再有加速行为,减速度-初速度散点数据呈不等腰三角形分布,三角形顶点对应的速度值为63.4km·h~(-1)。
        To investigate the performance of longitudinal acceleration for passenger cars on complex mountain roads,field test using real cars were conducted on two-lane mountainous roads with a total mileage of 3 039 km.Operational parameters of the test vehicles such as the speed,trajectory and acceleration under natural driving behaviors were collected. Meanwhile,cumulative frequency,probability distribution and percentile value of longitudinal acceleration were obtained after extracting the peak value of each waveform of the continuous longitudinal acceleration.The correlation and sensitivity between longitudinal acceleration,curve parameters and traveling speeds were analyzed.The results shows that:the cumulative frequency curve of deceleration is higher than that of acceleration after a certain percentile;mutation point of cumulative frequency curve' s slop appears with a range of 90th to 95th percentile and acceleration/decelerationvalues of 85th percentile are 0.60 and 0.85 m·s~(-2).Distribution of probability curves of acceleration/deceleration is positively skewed,and drivers' preferring values of deceleration and acceleration are 0.17m·s~(-2) and 0.25m·s~(-2) respectively.Deceleration and acceleration decrease with the increase of curve radius and the decrease of deflection angles,but the increasing/decreasing trend of continuous curves is weaker than that of independent curves.The critical radius of deceleration based on 85th,95th and upper bound driver behaviors are 190,225m and 275m respectively and critical radius of acceleration are 204,245m and 290m respectively.Acceleration increases with travel speed dropping and drivers' desired speed is 90km·h~(-1) for the driving environment analyzed. The scatter distribution of deceleration-initial speed shows isosceles triangles,and the speed corresponding with the vertex of triangle is 63.4km·h~(-1).
引文
[1]《中国公路学报》编辑部.中国交通工程学术研究综述·2016[J].中国公路学报,2016,29(6):1-161.Editorial Department of China Journal of Highway and Transport.Review on China's Traffic Engineering Research Progress:2016[J].China Journal of Highway and Transport,2016,29(6):1-161.
    [2]MOON S,YI K.Human Driving Data-based Design of a Vehicle Adaptive Cruise Control Algorithm[J].Vehicle System Dynamics,2008,46(8):661-690.
    [3]IWAKI R,KANEKO T,KAGEYAMA I.Study on the Longitudinal Control Analysis of a Driver of a Heavy-duty Vehicle Following Another Vehicle[J].Vehicle System Dynamics,2006,44(S1):216-229.
    [4]LEE G D,KIM S W.A Longitudinal Control System for a Platoon of Vehicles Using a Fuzzy-sliding Mode Algorithm[J].Mechatronics,2002,12(1):97-118.
    [5]HOOGENDOORN R G,AREM B V,BROOKHUIS K A.Longitudinal Driving Behavior in Case of Emergency Situations:An Empirically Underpinned Theoretical Framework[J].Procedia Social and Behavioral Sciences,2013,80(7):341-369.
    [6]HOOGENDOORN R G,HOOGENDOORN S P,BROOKHUIS K A,et al.Longitudinal Driving Behavior Under Adverse Conditions:A Close Look at Psycho-spacing Models[J].Procedia Social and Behavioral Sciences,2011,20:536-546.
    [7]CHEN Z,WU C,ZHONG M,et al.Identification of Common Features of Vehicle Motion Under Drowsy/Distracted Driving:A Case Study in Wuhan,China[J].Accident Analysis&Prevention,2015,81(2):251-259.
    [8]CASTELLANOS J C,FRUETT F.Embedded System to Evaluate the Passenger Comfort in Public Transportation Based on Dynamical Vehicle Behavior with User's Feedback[J].Measurement,2014,47:442-451.
    [9]TOKUNAGA R A,ASANO M,MUNEHIRO K,et al.Effects of Curve Designs and Road Conditions on Driver's Curve Sharpness Judgment and Driving Behavior[J].Journal of the Eastern Asia Society for Transportation Studies,2005(6):3536-3550.
    [10]NICKEL M,HUGEMANN W.Longitudinal and Lateral Accelerations in Normal Day Driving[C]//ALLEN E J.Proceedings of the ITAI Conference 2003.Croydon:ITAI,2003:1-8.
    [11]PERCO P,ROBBA A.Evaluation of the Deceleration Rate for the Operating Speed-profile Model[DB/OL].(2012-7-6)[2016-9-15].http://www.siiv.net/site/sites/default/files/Documenti/bari2005/060.pdf.
    [12]ALTAMIRA A,GARC Y,ECHAVEGUREN T,et al.Acceleration and Deceleration Patterns on Horizontal Curves and Their Tangents on Two-lane Rural Roads[C]//Transportation Research Board.93rd TRB Annual Meeting.Washington DC:Transportation Research Board,2014:1-15.
    [13]徐进,杨奎,彭其渊,等.公路客车横向加速度实验研究[J].西南交通大学学报,2014,49(3):536-545.XU Jin,YANG Kui,PENG Qi-yuan,et al.Field Measurement of Automobile's Lateral Acceleration[J].Journal of Southwest Jiaotong University,2014,49(3):536-545.
    [14]徐进,邵毅明,杨奎,等.基于人-车-路协同仿真的山区道路大型车辆行驶适应性分析[J].中国公路学报,2015,28(2):14-25.XU Jin,SHAO Yi-ming,YANG Kui,et al.Analysis of Adaptability of Large Vehicles on Mountainous Highways Based on Driver-vehicle-road Collaborative Simulation[J].China Journal of Highway and Transport,2015,28(2):14-25.
    [15]徐进,罗骁,张凯,等.基于自然驾驶试验的山区公路汽车行驶轨迹特性研究[J].中国公路学报,2016,29(7):38-51.XU Jin,LUO Xiao,ZHANG Kai,et al.Investigation on Characteristics of Vehicle Travelling Tracks on Mountain Highways Based on Natural Driving Tests[J].China Journal of Highway and Transport,2016,29(7):38-51.
    [16]邵毅明,毛嘉川,刘胜川,等.山区公路上驾驶人的车速控制行为分析[J].交通运输工程学报,2011,11(1):79-88.SHAO Yi-ming,MAO Jia-chuan,LIU Sheng-chuan,et al.Analysis of Speed Control Behavior for Driver on Mountain Highway[J].Journal of Traffic and Transportation Engineering,2011,11(1):79-88.
    [17]伍剑奇.高速公路行车舒适性评价研究[J].华东公路,2009(6):61-62.WU Jian-qi.The Evaluation on Ride Comfort of Expressway[J].Huadong Highway,2009(6):61-62.
    [18]陈祥.高速铁路客车乘坐舒适度综合评价模型研究[D].成都:西南交通大学,2010.CHEN Xiang.Research of Comprehensive Evaluation Model on Riding Comfort of High Speed Train[D].Chengdu:Southwest Jiaotong University,2010.
    [19]赵敏,杨轸,潘晓东.双车道公路平曲线段径向加速度相关实验研究[J].交通科学与工程,2010,26(4):7-10.ZHAO Min,YANG Zhen,PAN Xiao-dong.Experimental Research on Radial Acceleration with Curve of Two-lane Highway[J].Journal of Transport Science and Engineering,2010,26(4):7-10.
    [20]JTG B05—2015,公路项目安全性评价规范[S].JTG B05—2015,Specification for Highway Safety Audit[S].
    [21]LAMM R,CHOUEIRI E M,HAYWARD J C.Tangent as an Independent Design Element[J].Transportation Research Record,1988(1195):123-131.
    [22]FITZPATRICK K,ANDERSON I B,BAUER K M,et al.Evaluation of Design Consistency Methods for Two-lane Rural Highways,Executive Summary[R].Washington DC:Federal Highway Administration,2000.
    [23]FITZPATRICK K,ELEFTERIADOU L,HARWOOD D,et al.Speed Prediction for Two-lane Rural Highways[R].Washington DC:Federal Highway Administration,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700