用户名: 密码: 验证码:
双弯管磁过滤阴极真空弧技术沉积超厚多层钛掺杂类金刚石膜
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ultra-thick Multilayer Ti-doped DLC Films Deposited By Double Bend-tube Magnetic Filter Cathode Vacuum Arc Technology
  • 作者:姜其立 ; 王浩琦 ; 周晗 ; 庞盼 ; 刘建武 ; 廖斌
  • 英文作者:JIANG Qi-li;WANG Hao-qi;ZHOU Han;PANG Pan;LIU Jian-wu;LIAO Bin;College of Nuclear Science and Technology, Beijing Normal University;Beijing Radiation Center;
  • 关键词:超厚DLC膜 ; Ti掺杂 ; 双弯管 ; 磁过滤阴极真空弧沉积 ; C2H2
  • 英文关键词:ultra-thick DLC films;;Ti-doped;;double bend-tube;;magnetic filtered cathodic vacuum arc deposition;;C2H2
  • 中文刊名:BMGC
  • 英文刊名:China Surface Engineering
  • 机构:北京师范大学核科学与技术学院;北京市辐射中心;
  • 出版日期:2018-05-09 09:10
  • 出版单位:中国表面工程
  • 年:2018
  • 期:v.31;No.150
  • 基金:北京市共同建设专项基金(110651102)~~
  • 语种:中文;
  • 页:BMGC201803011
  • 页数:8
  • CN:03
  • ISSN:11-3905/TG
  • 分类号:59-66
摘要
极端工况对关键部件涂层的性能要求较高,作为常用涂层,薄类金刚石(Diamond-like carbon,DLC)膜因其厚度的局限性已不能满足日益增长的性能需求,因此超厚DLC膜的制备工艺具有较大的现实意义。采用双弯管磁过滤阴极真空弧沉积技术制备多层Ti掺杂DLC膜,并通过显微维氏硬度计、摩擦磨损试验仪、场发射扫描电子显微镜(FESEM)、能谱仪(EDS)、透射电子显微镜(TEM)、X光电子能谱仪(XPS)、X射线衍射仪(XRD)、拉曼光谱仪(Raman)等对膜的结构和性能进行表征。结果表明:薄膜的沉积速率最高可达0.40μm/min;随着沉积过程中C2H2流量的增加,Ti掺杂DLC膜中超硬Ti C相的相对含量降低,因此导致膜硬度降低,同时热稳定性变差;通过金属掺杂以及多层复合结构的方法能够有效制备低内应力的DLC膜,同时实现超厚DLC膜(最高可达42.3μm)的制备。
        Extreme operating conditions have high requirement for the performance of key component's coatings. As a common coating, thin diamond-like carbon(DLC) films cannot meet the increasing performance requirements due to the limited thickness. Therefore, developing preparation technology of ultra-thick DLC films has practical significance in researching. Multilayer Ti-doped DLC films were prepared by the deposition technology of double bend-tube magnetic filter cathode vacuum arc. Vickers hardness tester, friction and wear tester, FESEM, EDS, TEM, XPS, XRD and Raman spectrometer were selected to analyze the structures and properties of the films. The results show that the highest deposition rate can reach up to 0.40 μm/min. With increasing acetylene(C2 H2) flow rate during the deposition, the relative content of super-hard Ti C phase in the Ti-doped DLC films decreases, which is responsible for the decrease of the hardness and the worse thermal stability. The DLC films with low internal stress can be effectively prepared by metal doping and multilayer composite structure, and the preparation of ultra-thick DLC film(up to 42.3 μm) is achieved at the same time.
引文
[1]DONNET C.Recent progress on the tribology of doped diamond-like and carbon alloy films:A review[J].Surface&Coatings Technology,1998,s100-101(1):180-186.
    [2]VEPREK S,VEPREK-HEIJMAN M J G.Industrial applications of superhard nanocomposite films[J].Surface&Coatings Technology,2008,202(21):5063-5073.
    [3]BANDORF R,LüTHJE H,HENKE C,et al.Different carbon based thin films and their microtribological behaviour in MEMS applications[J].Surface&Coatings Technology,2005,200(5):1777-1782.
    [4]HUANG B R,YEH C S,WANG D C,et al.Field emission studies of amorphous carbon deposited on copper nanowires grown by cathodic arc plasma deposition[J].New Carbon Materials,2009,24(2):97-101.
    [5]MOMINUZZAMAN S M,SOGA T,JIMBO T,et al.Diamond-like carbon by pulsed laser deposition from a camphoric carbon target:effect of phosphorus incorporation[J].Diamond&Related Materials,2001,10(9-10):1839-1842.
    [6]FUGE G M,MAY P W,ROSSER K N,et al.Laser Raman and X-ray photoelectron spectroscopy of phosphorus containing diamond-like carbon films grown by pulsed laser ablation methods[J].Diamond&Related Materials,2004,13(4-8):1442-1448.
    [7]KLEINSORGE B,ILIE A,CHHOWALLA M,et al.Electrical and optical properties of boronated tetrahedrally bonded amorphous carbon(ta-C:B)[J].Diamond&Related Materials,1998,7(2):472-476.
    [8]MA G,GONG S,LIN G,et al.A study of structure and properties of Ti-doped DLC film by reactive magnetron sputtering with ion implantation[J].Applied Surface Science,2012,258(7):3045-3050.
    [9]BAI W Q,LI L L,WANG X L,et al.Effects of Ti content on microstructure,mechanical and tribological properties of Ti-doped amorphous carbon multilayer films[J].Surface&Coatings Technology,2015,266:70-78.
    [10]CHOI H W,CHOI J H,LEE K R,et al.Structure and mechanical properties of Ag-incorporated DLC films prepared by a hybrid ion beam deposition system[J].Thin Solid Films,2007,516(2):248-251.
    [11]LEE C S,LEE K R,SUH S H.Mechanical property optimisation of materials by nanostructuring:Reduction of residual compressive stress in ta-C film[J].Materials Science&Technology,2013,20(8):993-995.
    [12]KIM T Y,LEE C S,LEE Y J,et al.Reduction of the residual compressive stress of tetrahedral amorphous carbon film by Ar background gas during the filtered vacuum arc process[J].Journal of Applied Physics,2007,101(2):023504-023504-5.
    [13]LEE C S,LEE K R,EUN K Y,et al.Structure and properties of Si incorporated tetrahedral amorphous carbon filmsprepared by hybrid filtered vacuum arc process[J].Diamond&Related Materials,2002,11(2):198-203.
    [14]BOXMAN R L.Handbook of vacuum arc science and technology[J].Geochimica Et Cosmochimica Acta,1995,46(11):2039-2047.
    [15]LI G,XIA L F.Structural characterization of Ti Cx films prepared by plasma based ion implantation[J].Thin Solid Films,2001,396(1):16-22.
    [16]KURUVILLA A K,PRASAD K S,BHANUPRASAD V V,et al.Microstructure-property correlation in Al Ti B2(XD)composites[J].Scripta Metallurgica et Materialia,1990,24(5):873-878.
    [17]ROBERTSON J.Diamond-like amorphous carbon[J].Materials Science&Engineering R Reports,2002,37(4):129-281.
    [18]FERRARI A C.Determination of bonding in diamond-like carbon by Raman spectroscopy[J].Diamond and Related Materials,2002,11(3):1053-1061.
    [19]FYTA M,KELIRES P C.Stress variations near surfaces in diamond-like amorphous carbon[J].Journal of Non-crystalline Solids,2000,266:760-764.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700