用户名: 密码: 验证码:
高洁净轴承钢夹杂物评价与滚动接触疲劳寿命
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Inclusions Evaluation and Rolling Contact Fatigue Life of High Clean Bearing Steels
  • 作者:田超 ; 刘剑辉 ; 董瀚
  • 英文作者:Tian Chao;Liu Jianhui;Dong Han;Central Iron & Steel Research Institute;
  • 关键词:高洁净轴承钢 ; GCr15钢 ; 非金属夹杂物 ; 统计极值法 ; 滚动接触疲劳
  • 英文关键词:high clean bearing steel;;GCr15 steel;;nonmetallic inclusion;;statistical extremum method;;rolling contact fatigue life
  • 中文刊名:SHJI
  • 英文刊名:Shanghai Metals
  • 机构:钢铁研究总院;
  • 出版日期:2018-07-31
  • 出版单位:上海金属
  • 年:2018
  • 期:v.40;No.226
  • 基金:国家自然科学基金(No.51474076);; 国家国际科技合作专项(No.2015DFG51950)
  • 语种:中文;
  • 页:SHJI201804001
  • 页数:6
  • CN:04
  • ISSN:31-1558/TF
  • 分类号:5-9+16
摘要
为了探讨低氧高洁净轴承钢的夹杂物评判标准,对相同工艺下生产的T.[O]≤5μg/g的高洁净轴承钢,使用夹杂物评级和统计极值法进行了评价。并对试验钢的滚动接触疲劳(RCF)寿命进行了测定。结果表明,两组试验钢的滚动接触疲劳寿命存在明显差异,使用统计极值法可以对高洁净轴承钢进行有效区分,两组试验钢在30 000 mm~2参考区域内最大夹杂物尺寸预测值分别为41和27μm;当最大接触应力为4.5 GPa时,两组试验钢所对应的RCF寿命(L_(10))分别为6.58×10~6和7.41×10~6r。当氧含量很低时,硫含量较高所导致的硫化物增多将使夹杂物的预测尺寸偏大。
        In order to approach the criteria for evaluating the inclusion of low-oxygen high clean bearing steel,which with T. [O]≤5 μg/g produced by the same process were evaluated by inclusion rating and statistical extremum method,and their rolling contact fatigue life were also measured. The results showed that there were significant differences in the rolling contact fatigue life between two experimental steels. Statistics of extreme values method could effectively distinguish the high clean bearing steels. The predicted maximum inclusion size of the two experimental steels were 41 and 27 μm in an area of 30 000 mm~2,and the corresponding RCF lives were 6. 58 ×10~6 and7. 41 ×10~6 r respectively under the maximum contact stress of 4. 5 GPa. When the oxygen content was low,predicted inclusion size would be larger due to more sulfides resulting from the higher sulfur content.
引文
[1]章守华,吴承建.钢铁材料学[M].北京:冶金工业出版社,1992.
    [2]钟顺思,王昌生.轴承钢[M].北京:冶金工业出版社,2000.
    [3]濑户浩藏.轴承钢——在20世纪诞生并飞速发展的轴承钢[M].北京:冶金工业出版社,2003.
    [4]虞明全.轴承钢钢种系列的发展状况[J].上海金属,2008,30(3):49-54.
    [5]FUJIMATSU T,NAKAMIZO T,NAKASAKI M,et al.Crack initiation and propagation behavior around the defect in steel under rolling contact fatigue[J].Sanyo Technical Report,2016,23(1):47-61.
    [6]朱诚意,吴炳新,张志成,等.轴承钢生产过程中夹杂物控制的研究进展[J].机械工程材料,2014,38(7):8-15.
    [7]雷建中,梅亚莉.我国轴承用材料及热处理技术近期发展动态[J].轴承,2011(9):57-60.
    [8]李昭昆,雷建中,徐海峰,等.国内外轴承钢的现状与发展趋势[J].钢铁研究学报,2016,28(3):1-12.
    [9]MURAKAMI Y,USUKI H.Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels.II:Fatigue limit evaluation based on statistics for extreme values of inclusion size[J].Internal Journal of Fatigue,1989,11(5):299-307.
    [10]ATKINSON H V,SHI G.Characterization of inclusions in clean steels:a review including the statistics of extremes methods[J].Progress in Materials Science,2003,48(5):457-520.
    [11]ZHANGJ M,JI L K,BAO D J,et al.Gigacycle fatigue behavior of 1 800 MPa grade high strength spring steel for automobile lightweight[J].Journal of Iron and Steel Research International,2014,21(6):614-618.
    [12]BERETTA S,MURAKAMI Y.Statistical analysis of defects for fatigue strength prediction and quality control of materials[J].Fatigue and Fracture of Engineering Materials and Structure,1998,21(9):1049-1065.
    [13]李永德,张莉莉,张冲,等.SUJ2轴承钢超长寿命疲劳行为研究[J].材料工程,2016,44(8):85-92.
    [14]ITOH H,HINO M,BAN-YA S.Thermodynamics on the formation of spinel nonmetallic inclusion in liquid steel[J].Metallurgical&Materials Transactions B,1997,28(5):953-956.
    [15]刘浏.洁净钢生产技术的发展与创新[J].中国冶金,2016,26(10):18-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700